Laboratory and observational studies of C$_{60}$ and C$_{60}^+$

Susanna L. Widicus Weaver, Matthew C. Zwier, Yun Ding, and Benjamin J. McCall

University of Illinois at Urbana-Champaign
I. Motivations for studying C$_{60}$ and C$_{60}^+$

II. Spectral studies of C$_{60}$

III. Observational studies of C$_{60}$ with TEXES at IRTF

IV. Spectral studies of C$_{60}^+$
Motivations for Studying C_{60} and C_{60}^+

- C_{60} was discovered during experiments designed to simulate outflows of carbon stars.
- C_{60} should be stable in the ISM (~ 44 eV required to break cage).
- C_{60} has been found in sediments related to meteorite impacts.
- C_{60} has been found in LDEF craters.
- C_{60} should be ionized by stellar radiation and “C_{60}^+ should be ubiquitously distributed in space.”

(Kroto *Science* 242, 1988)
About C_{60}

- $3(60)-6 = 174$ vibrational degrees of freedom
- Icosahedral (I_h) Symmetry: 6 five-fold axes, 10 three-fold axes, 15 two-fold axes

- Sixty quantum-mechanically indistinguishable (spin 0) bosons
- Symmetry restrictions on total wavefunction
IR Spectroscopy of C\textsubscript{60}

- 4 \(F_{lu} \) IR active modes \([1432, 1183, 577, 528 \text{ cm}^{-1}]\)
- Gas phase IR spectrum observed at 1065 K; no rotational structure resolved (Frum et al. *Chem. Phys. Lett.* 176, 1991)

A rotationally cold spectrum is required for comparison to interstellar spectra.
Gas Phase Spectral Studies of C$_6^0$

100 W halogen bulbs in copper tubing coil to preheat argon carrier gas.

150 W halogen bulbs to heat oven.

C$_6^0$ sample in oven.

Supersonic expansion adiabatically cools C$_6^0$.

Pressure > 50 mTorr. $T > 600$ °C gives vapor.

Argon gas to supersonic expansion.
CW Cavity Ringdown Spectroscopy

- A high finesse cavity is placed around the supersonic expansion.
- Radiation is coupled into the cavity, which is cycled in and out of resonance.
- When the cavity is on resonance the radiation is switched off.
- The exponential decay rate is a direct measurement of absorption.
Current State of the C_{60} Experiment

- Sustained flow of gas phase C_{60} achieved
- Optics for CW cavity ringdown at 1183 cm$^{-1}$ currently being assembled
- Direct absorption N_2O spectrum obtained with a test QCL
Astronomical Spectroscopy of C_{60}

- Data obtained June 2003
- Upper limit $\sim 3 \times 10^{15} \text{ cm}^{-2}$
- Need laboratory spectrum!

NASA’s 3-meter IRTF (InfraRed Telescope Facility), Mauna Kea, Hawaii

TEXES: Texas Echelon Cross Echelle Spectrograph

Normalized Flux

Wavenumber [cm$^{-1}$]
Spectroscopy of C$_{60}^+$

The electronic and infrared spectra of C$_{60}^+$ were observed in neon and argon matrices.

(Fulara, Jakobi and Maier *Chem. Phys. Lett.* 211, 1993)

This was used as a basis for observational searches and two DIBs were attributed to C$_{60}^+$.

(Foing and Ehrenfreund *Nature* 369, 1994; *A&A* 319, 1997)
Is C_{60}^+ Really a DIB Carrier?

Criteria for these two DIBs to be C_{60}^+:
1. The same FWHM ✔
2. Matching relative intensities to lab spectra ❓
3. Gas-matrix shifts consistent with experimental information ❓

A gas phase C_{60}^+ spectrum is required to answer this question definitively.

“The case for C_{60}^+ is better than for many other [DIB] candidates and now rests in the court of laboratory spectroscopists.” (Jenniskens et al. A&A 327, 1997.)
Gas Phase Spectral Studies of C_{60}^+

150 W halogen bulbs to heat oven

$T > 600 \, ^\circ C$ gives vapor pressure $> 50 \, \text{mTorr}$

100 W halogen bulbs in a copper tubing coil to preheat argon carrier gas

Electrode at $-V$ gives a discharge for C_{60}^+ experiment

Al_2O_3 spacer & epoxy to seal and insulate

Supersonic expansion adiabatically cools C_{60}

Ar
Current State of the C_{60}^+ Experiment

- CW cavity ringdown achieved at 950 nm
- Discharge source built from high temperature materials and tested with N_2/Ar and C_{60}/Ar
- Cold N_2^+ spectrum observed with N_2/Ar discharge while heating gas and oven to > 600°C
- The search for the C_{60}^+ spectrum is underway
Cold N_2^+ Ions at High Resolution and Sensitivity

$\alpha_{\text{min}} \sim 2 \times 10^{-9} \text{ cm}^{-1}$

$T_{\text{rot}} = 21 \pm 5 \text{ K}$

FWHM = 0.011 cm$^{-1}$
Acknowledgements

• The McCall Group
 Especially Brian Pohrte, Brian Brumfield, and Jeff Carter

• Princeton (QCL):
 Claire Gmachl
 Scott Sheridan

• UC Davis (TEXES):
 Dana Nuccitelli
 Matthew Richter

• NASA Laboratory Astrophysics Program

• NSF

• ACS PRF

• Dreyfus Foundation