The Enigmatic Diffuse Interstellar Bands

Ben McCall

Department of Chemistry and Department of Astronomy University of Illinois at Urbana-Champaign

Apache Point Observatory DIB Collaboration:
Meredith Drosback (Colorado), Scott Friedman (STScI), Lew Hobbs (Yerkes), Ben McCall (UIUC), Takeshi Oka (Chicago), Brian Rachford (ERAU), Ted Snow (Colorado), Paule Sonnentrucker (JHU), Julie Thorburn (Yerkes), Dan Welty (Chicago), Don York (Chicago)

The First Interstellar Radical

As of 1900, two types of lines known in stellar spectra: stellar lines or atmospheric lines

In 1904, J. Hartmann (Potsdam) studied the binary star δ Orionis and observed velocity variations in stellar lines.
"Among the lines...the calcium line at $\lambda 3934$ [K] exhibits a very peculiar behavior. It...does not share in the periodic displacements of the lines caused by the orbital motion of the star."
"We are thus led to the assumption that at some point in space in the line of sight between the Sun and δ Orionis there is a cloud which produces that absorption...we admit the further assumption, very probable from the nature of the observed line, that the cloud consists of calcium vapor."

Interstellar Na -

In 1919, Mary Lea Heger (Lick) found the sodium D lines are "stationary" in binaries β Sco \& δ Ori.
"The close relationship between the D lines of sodium and the H and K lines of calcium in the two stars...is very striking. We have still to look for an explanation of the peculiarity in these lines."
"Do sodium clouds similar to the hypothetical calcium clouds exist in space?...Are there any other star lines which we might suspect of a behavior similar to that shown by the H and K and the D lines?"

Molecular Radicals

- Unidentified lines observed in late 1930s
- Assigned to $\mathrm{CH}, \mathrm{CH}^{+}, \mathrm{CN}$ in the early 1940 s

Interstellar H• (21 cm)

OBSERVATION OF A LINE IN THE GALACTIC RADIO SPECTRUM

Radiation from Galactic Hydrogen at I, $420 \mathrm{Mc} . / \mathrm{sec}$.

T${ }^{1} \mathrm{HE}$ ground-state of the hydrogen atom is hyperfine doublet the splitting of which, termined ' by the method of atomic beams, $1,420 \cdot 405 \mathrm{Mc} . / \mathrm{sec} \mathrm{C}^{1}$. Transitions occur between unnor $/ F=11$ and lowar $/ F=0$ momnonents
decination - \boldsymbol{o}^{-}; scanning is erfected oy the eartu rotation.

The line was first detected on March 25, 1951. appeared in emission with a width of about 80 k and was most intense in the direction 18 hr . right ascension. Many subsequent observations have established the following facts. At declination -5° the line is detectable, by our equipment, over a period of about six hours, during which the apparent

H. I. Ewen
E. M. Purcell
me 150 kc. above the shift varied during an shift and its variation ited for by the earth's ion of the solar system riod of reception shifts lar time, as it ought to. adve he drawn from these

Lyman Laboratory, Harvard University, Cambridge,

Mass.
June 14.

- 1-..-…

Dense vs. Diffuse Clouds

\therefore Dense molecular clouds:

- $\mathrm{H} \rightarrow \mathrm{H}_{2}$
- $\mathrm{C} \rightarrow \mathrm{CO}$
- $n\left(\mathrm{H}_{2}\right) \sim 10^{4}-10^{6} \mathrm{~cm}^{-3}$
- $T \sim 20 \mathrm{~K}$

Diffuse clouds:

- $\mathrm{H} \leftrightarrow \mathrm{H}_{2}$
- $\mathrm{C} \rightarrow \mathrm{C}^{+}$
- $n\left(\mathrm{H}_{2}\right) \sim 10^{1}-10^{3} \mathrm{~cm}^{-3}$
- $T \sim 50 \mathrm{~K}$
- -5 Persei

A Census of Galactic Radicals

- H. $3 \times 10^{9} \mathrm{M}_{\odot}=6 \times 10^{42} \mathrm{~g} \sim 3 \times 10^{66}$ radicals
- Optical studies:
$-\mathrm{CH} \sim 5 \times 10^{57}$
$-\mathrm{CH}^{+} \sim 8 \times 10^{58}$
$-\mathrm{CN} \sim 7 \times 10^{57}$
$-\mathrm{OH} \sim 1 \times 10^{59}$
$-\mathrm{NH} \sim 2 \times 10^{57}$
$-\mathrm{C}_{2} \sim 5 \times 10^{58}$
$-\mathrm{C}_{3} \sim 4 \times 10^{57}$
- DIBs ~ 10^{58} ?
- Radio studies:

$$
\begin{array}{ll}
-\mathrm{C}_{2} \mathrm{H} & \sim 3 \times 10^{58} \\
-\mathrm{C}_{3} \mathrm{H}_{2} & \sim 2 \times 10^{57} \\
-\left(\mathrm{HCO}^{+}\right) & \sim 5 \times 10^{57} \\
-\left(\mathrm{HOC}^{+}\right) & \sim 8 \times 10^{55}
\end{array}
$$

- Infrared studies:
$-\left(\mathrm{H}_{3}{ }^{+}\right) \quad \sim 2 \times 10^{59}$

Discovery of the DIBs

- $\lambda \lambda 5780,5797$ seen as unidentified bands
- ζ Per, ρ Leo (Mary Lea Heger, Lick, 1919)
- Broad ("diffuse")
- Possibly "stationary"

B. J. McCall, in preparation

Interstellar Origin

TABLE I

Measurements in the Spectrum of Boss 6r42

G.M.T.	Plate	Star		Dr, 2	$\lambda 5780$	$\lambda 5797$	$\lambda 6278$	$\lambda 6284$
I928 Dec. I932 Oct. I 1	G ${ }_{\text {214 }}{ }_{620}$	Obs. $\mathrm{km} / \mathrm{sec}$ -57 -145	$\begin{array}{r} \text { Comp. } \\ \mathrm{km} / \mathrm{sec} \\ =77 \\ -\quad 127 \end{array}$	$\begin{gathered} \mathrm{km} / \mathrm{sec} \\ (-18) \\ 20 \end{gathered}$	I.A.	I.A.	$\underset{(6277 \cdot 7)}{\text { I.A. }}$	$\begin{gathered} \text { I.A. } \\ (6283 \cdot 5) \end{gathered}$
1934 Jan. 2.60.	$970 \dagger$	-145 $-\quad 33$	127 -17	17				
July 3r.96.	1058	-r 50	-126	20	5780.6			3.6
Aug. 27.85.	1063	-124	-127	18	0.3	5796.6	7.6	3.9
27.94	1064	-130	-128	21	0.4	7.2	7.8	4.2
28.91	1069	-112	- 129	16	0.8	6.7	7.6	4.7
28.97.	1070	-118	-129	18	0.6	7.2	7.9	3.9
Sept. 29.78.	$1078 \dagger$	+65	+78	(26)	(0.5)			(4.4)
30.73 .	1082	+105	+104	23	0.6		$7 \cdot 5$	3.7
30.86	1083	$+132$	+105	19	0.8		7.6	3.9
Oct. 1.74.	1087	+ 88	+ 97	-20	0.5	6.9	7.9	4.2
Mean				-19.5	0.58		7.67	4.02
High velocity.		+r08	+102	-20.7	0.63	(6.9)	7.65	3.93
Low velocity.		-130	-128	-18.9	0.54	6.9	7.67	4.05
Other stars.					5780.44	5796.88	$6277 \cdot 70$	6283.91

P. W. Merrill, ApJ 83, 126 (1936)

Assumed Stellar

High-velocity group ... $5779.7 \quad 6283.3$
Low-velocity group $5781.1 \quad 6284.6$
Difference $. \ldots \ldots+1.4+1.3$

Assumed Interstellar
$5780.4 \quad 6284.0$
$5780.6 \quad 6284.1$
$+0.2+0.1$

For Comparison
Boss 6142 5780.5 6284.0
Other stars $5780.4 \quad 6283.9$

DIBs as Radicals?

Finally I should like to mention still another method of obtaining free-radical spectra in absorption: the study of the spectra of distant stars. These spectra show features that can be definitely ascribed to absorption in the interstellar medium. In addition to a number of free atoms, the radicals $\mathrm{CH}, \mathrm{CH}^{+}, \mathrm{CN}$, and OH have been unambiguously identified in the interstellar medium. Their concentration is of course extremely small, of the order of one molecule per cubic meter. A number of additional features observed in interstellar absorption have resisted all attempts at identification, but they are, at least in my opinion, very likely due to some free radical or ion present in the interstellar medium.

A Growing Problem

- Mostly in the visible
- 4175-8763 A
- None known in UV
- Few in near-infrared
- 9577, 9632, 11797, $13175 \AA$

Examples: Lorentzian Profiles

Examples: Smooth Profiles

M. Drosback, Ph.D. Thesis (2006)

Krelowski \& Schmidt, ApJ 477, 209 (1997)

Examples: Fine Structure

Examples: Molecular Structure?

Galazutdinov et al., MNRAS 345, 365 (2003)

Sarre et al., MNRAS 277, L41 (1995)

The APO DIB Survey

- Apache Point Observatory 3.5-meter
- 3,600-10,200 $\AA ; \lambda / \Delta \lambda \sim 37,500(8 \mathrm{~km} / \mathrm{s})$
- 119 nights, from Jan 1999 to Jan 2003
- S/N (@ 5780 $)$ > 500 for 160 stars (115 reddened)
- Measurements \& analysis still underway

Echelle Image

Fraunhofer Lines
H: Ca II ~ $3968 \AA$
K: Ca II ~3934 \AA
D: $\mathrm{Na} \mathrm{I} \sim 5890 \AA$
$\mathrm{A}: \mathrm{O}_{2} \sim 7650 \AA$

Stellar Spectra

Stellar Spectra

Overview of Preliminary Results

- Spectral atlas of DIBs
- for comparison to laboratory spectra
- Version 1: HD 204827
- Version 2: Four reddened stars
- DIB correlations
- between DIBs \& other species
\rightarrow chemistry, environment of carriers
- among DIBs
\rightarrow spectra of carriers

DIB Spectral Atlas: Version 1

- Initial target: HD 204827
- heavily reddened: $\mathrm{E}_{\mathrm{B}-\mathrm{V}}=1.11$
- early spectral type: ~B0V
- fairly bright: V=7.94
- member of open cluster Trumpler 37
- in Cepheus OB2 association
- Abundant C_{2}
- Champion of C_{3}

Spectroscopic Binary!

Great Test for DIBs

- DIB count: 259 confirmed, 115 new, 374 total!
- Atlas to be released late 2007 or early 2008

DIB Spectral Atlas: Version 2

Four heavily reddened stars:

Star	Sp. Type	$\mathbf{E}_{\mathrm{B}-\mathrm{v}}$	$\mathbf{N}\left(\mathrm{C}_{2}\right)$
HD 204827	B0V	1.11	440×10^{12}
Cyg OB2 5	O7f	1.99	200×10^{12}
HD 166734	O8e	1.39	160×10^{12}
HD 183143	B7Iae	1.27	$<6 \times 10^{12}$

Atlas Plots: $4300-4500 \AA$

Atlas Plots: $4900-5100 \AA$

Atlas Plots: $6500-6700 \AA$

Statistics \& Status

Criterion $(2$ stars $)$	Criterion $(4$ stars $)$	New DIBs	Confirmed DIBs	Total DIBs
10σ	5σ	111	270	381
8σ	4σ	151	291	442
4σ	-	284	350	634

- Issues still to address:
- defining the continuum
- blends of DIBs with each other
- Complete atlas sometime in 2008

DIB Correlations: H \& H_{2}

$\lambda 5780$ well correlated with H
[a la Herbig ApJ 407, 142 (1993)]

no correlation with H_{2}

The " C_{2} DIBs"

- First set of DIBs known to be correlated with a known species!

Correlations Among DIBs

- Assumptions:
- gas phase molecules
- DIBs are vibronic bands
- low temperature
- carriers all in $\mathrm{v}=0$
- relative intensities fixed
- Franck-Condon factors
- independent of T, n
- Method:
- look for DIBs with tight correlations in intensity
- Prospect:
- identify vibronic spectrum of single carrier
- spacings may suggest ID

Correlation Plots

\section*{| A | |
| ---: | ---: |
| Star \#1 | B |}

Star \#2

Wavelength

Example: Bad Correlation

Example: Good Correlation

More on $\lambda 6613 \& \lambda 6196$

Can observed scatter be due to measurement errors?

- Observed r=0.985
- Assume perfection
- Add Gaussian noise
- 1000 M.C. trials
- Double the noise
- 1000 M.C. trials
- Statistically OK if we underestimated errors

Statistics of Correlations

- 58 strong DIBs
- Pairs of DIBs observed in >40 stars
- 1218 pairs
- Generally well correlated
- Few very good correlations
- 118 with $r>0.90$
- 19 with $r>0.95$

Why So Few Perfect Correlations?

- Assumption of a common ground state bad?
- energetically accessible excited states?
- spin-orbit splitting?
- if linear molecules
- low lying vibrationally excited states?
- if very large molecules
- "Vertical" transitions?
- intense origin band
- weaker vibronic bands
- correlations could be seen with weaker bands?

The Road to a Solution

- Laboratory spectroscopy is essential!
- Blind laboratory searches unlikely to work $\sim 10^{7}$ organic molecules known on Earth $\sim 10^{200}$ stable molecules of weight <750 containing only C, H, N, O, S
- Observational constraints \& progress are also essential!
- Computational chemistry will play an important role
- Close collaborations needed!

Advertisement

SCRIBES: Sensitive Cooled Resolved Ion BEam Spectroscopy

- Infrared spectra of ions important in:
- astrochemistry
- atmospheric chemistry
- propulsion/combustion
- Optical spectra \rightarrow DIBs ?

Acknowledgments

ACS Petroleum Research Fund

Dreyfus New Faculty Award

NASA Laboratory Astrophysics

NSF Divisions of Chemistry \& Astronomy

Packard
Fellowship

http://astrochemistry.uiuc.edu

