Enhanced cosmic-ray ionization toward ζ Persei inferred from storage ring measurement of dissociative recombination rate of rotationally cold H₃⁺

- B. J. McCall, A. J. Huneycutt, R. J. Saykally (UC Berkeley)
- T. R. Geballe (Gemini Observatory)
- N. Djuric, G. H. Dunn (University of Colorado & NIST)
- J. Semaniak, O. Novotny (Świetokrzyska Academy, Poland)
Too Much H$_3^+$ in Diffuse Clouds

- Column density 3×10^{14} cm$^{-2}$, just like dense cloud!
- Chemical model \rightarrow n(H$_3^+$) \sim 10^{-7} cm$^{-3}$
- N(H$_3^+$) / n(H$_3^+$) \rightarrow path length is 1 kpc!?
- Implies $\langle n$(H)\rangle \sim 20 cm$^{-3}$ (too low)

McCall, Geballe, Hinkle, & Oka
Science 279, 1910 (1998)
Other Diffuse Clouds, too!

- General problem with model:

$$[H_3^+] = \frac{\zeta}{k_e} \frac{N(H_2)}{N(e^-)}$$

- ζ
- k_e
- $[H_2]/[e^-]$
H_3^+ toward ζ Persei

Rules out $[\text{e}^-]/[\text{H}_2]$
H$_3^+$ Dissociative Recombination

- Laboratory values of k_e varied by 4 orders of magnitude!
- Even worse: theory in infancy, way off...
- Big problem: not measuring H$_3^+$ in ground states
Storage Ring Measurements

- Complete vibrational relaxation
- Very simple experiment
- Control H_3^+ – e^- impact energy
- Rotationally hot ions produced
- No rotational cooling in ring

H_3^+

H, H_2

CRYRING
• H_3^+ produced is rotationally cold, as in interstellar medium

CRYRING Results

• Structure (resonances) in the cross-section
• $k_e = 2.6 \times 10^{-7}$ cm3 s$^{-1}$
• Chris Greene's theory

McCall, et al.
Nature 422, 500 (2003)
Implications for ζ Persei

\[\frac{N(H_3^+)}{L} = [H_3^+] = \frac{\zeta N(H_2)}{k_e N(e^-)} \]

\[\zeta L = (2.6 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}) \frac{N(H_3^+)}{N(H_2)} \frac{N(e^-)}{(3.8 \times 10^{-4})} \]

\[\zeta L = 8000 \text{ cm s}^{-1} \]

Adopt \(\zeta = 3 \times 10^{-17} \text{ s}^{-1} \)
\(L = 85 \text{ pc} \)
\(\langle n \rangle = 6 \text{ cm}^{-3} \)

Cross out:
Adopt \(L = 2.1 \text{ pc} \)
\(\zeta = 1.2 \times 10^{-15} \text{ s}^{-1} \)
(40x higher!)
• Enhanced cosmic-ray flux in ζ Persei
• Widespread H_3^+ in diffuse clouds
 – perhaps widespread cosmic-ray enhancement?
• Dense cloud H_3^+ is "normal"
 – enhanced cosmic-ray flux only in diffuse clouds
 – low energy component?
 – no constraints, aside from chemistry!!
• Substantial impact on diffuse cloud chemistry
 – more frequent ion-neutral reactions
 – enhanced oxygen chemistry ($H^+ + O \rightarrow O^+ + H$)
Future Work

• Search for H$_3^+$ in more UV-accessible sightlines
 – "Direct" probe of cosmic-ray flux
 – [Non-detections in ω Persei, ζ Ophiuchi ?]

• Observations of H$_3^+$ in heavily reddened sources
 – Fall-off in cosmic-ray flux
 – Transition of C$^+$ \rightarrow CO

• Comprehensive study of ζ Persei
 – Review all constraints on density, path length
 – Model cloud structure, inhomogeneities
Rich Diffuse Cloud Chemistry

- From 1930s through the mid-1990s, only diatomic molecules thought to be abundant in diffuse clouds
- Since 1998, many polyatomics observed:
 - H_3^+ in infrared
 - $\text{HCO}^+, \text{C}_2\text{H}, \text{C}_3\text{H}_2$ in radio (Lucas & Liszt)
 - C_3 in near-UV (Maier, et al.)
- Diffuse Interstellar Bands!