Enhanced cosmic-ray ionization toward ζ Persei inferred from storage ring measurement of dissociative recombination rate of rotationally cold H₃⁺ - ★ B. J. McCall, A. J. Huneycutt, R. J. Saykally (UC Berkeley) - ★ T. R. Geballe (Gemini Observatory) - ★ N. Djuric, G. H. Dunn (University of Colorado & NIST) - ★ J. Semaniak, O. Novotny (Świetokrzyska Academy, Poland) - ★ A. Al-Khalili, A. Ehlerding, F. Hellberg, S. Kalhori, A. Neau, F. Osterdahl, R. Thomas, M. Larsson (Stockholm University & Manne Siegbahn Laboratory) # Too Much H₃⁺ in Diffuse Clouds - Column density 3×10¹⁴ cm⁻², just like dense cloud! - Chemical model → n(H₃⁺) ~ 10⁻⁷ cm⁻³ - N(H₃⁺) / n(H₃⁺) → path length is 1 kpc!? - Implies $\langle n(H) \rangle \sim 20 \text{ cm}^{-3}$ (too low) ### Other Diffuse Clouds, too! General problem with model: # H₃⁺ toward ζ Persei McCall, et al. Nature 422, 500 (2003) #### N(H₂) from Copernicus | HD | NAME | ¥II. | ρ_{II} | 9. T. | E(B-V)
mag. | r
[pc] | log
N(H ₂)
[cm ⁻²] | log
N(HI)
[cm ⁻²] | 10g
N(HI + H ₂)
[cm ⁻²] | |---|----------------------------------|---------------------------------|--------------------------|---|--------------------------|----------------------------------|--|---|---| | 24398
24760
24912
28497
30614 | C Per
E Per
ξ Per
α Cam | 162
157
160
209
144 | -17
-10
-13
-37 | B1 Ib
B0.5 III
07.5 IIIuf
B1.5 Ve
09.5 Ia | .33
.09
.33
.02 | 394
308
538
466
1164 | 20.67
19.53
20.53
14.82
20.34 | 20.81
20.40
21.11
20.20
20.90 | 21.20
20.50
21.30
20.20
21.09 | Savage et al. ApJ 216, 291 (1977) #### N(C+) from HST Cardelli et al. ApJ 467, 334 (1996) # H₃⁺ Dissociative Recombination - Laboratory values of k_e varied by 4 orders of magnitude! - Even worse: theory in infancy, way off... - Big problem: not measuring H₃⁺ in ground states # Storage Ring Measurements - + Complete vibrational relaxation - + Very simple experiment - + Control H₃⁺ e⁻ impact energy - Rotationally hot ions produced - No rotational cooling in ring ## Berkeley Supersonic Ion Source H₃⁺ produced is rotationally cold, as in interstellar medium ## **CRYRING** Results - Structure (resonances) in the cross-section - $k_e = 2.6 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$ - Chris Greene's theory Rules McCall, et al. Nature 422, 500 (2003) ## Implications for ζ Persei $$\frac{N(H_3^+)}{L} = [H_3^+] = \frac{\zeta}{k_e} \frac{N(H_2)}{N(e^-)}$$ $$\zeta L = (2.6 \times 10^{4} \text{ cm}^{3} \text{ s}^{-1}) N (10^{4} s}^{-1})$$ $$\zeta L = 8000 \text{ cm s}^{-1}$$ #### What Does This Mean? - Enhanced cosmic-ray flux in ζ Persei - Widespread H₃⁺ in diffuse clouds - perhaps widespread cosmic-ray enhancement? - Dense cloud H₃⁺ is "normal" - enhanced cosmic-ray flux only in diffuse clouds - low energy component? - no constraints, aside from chemistry!! - Substantial impact on diffuse cloud chemistry - more frequent ion-neutral reactions - enhanced oxygen chemistry (H⁺ + O → O⁺ + H) #### Future Work - Search for H₃⁺ in more UV-accessible sightlines - "Direct" probe of cosmic-ray flux - [Non-detections in o Persei, ζ Ophiuchi ?] - Observations of H₃⁺ in heavily reddened sources - Fall-off in cosmic-ray flux - Transition of C⁺ → CO - Comprehensive study of ζ Persei - Review all constraints on density, path length - Model cloud structure, inhomogeneities # Rich Diffuse Cloud Chemistry - From 1930s through the mid-1990s, only diatomic molecules thought to be abundant in diffuse clouds - Since 1998, many polyatomics observed: - H₃⁺ in infrared - HCO⁺, C₂H, C₃H₂ in radio (Lucas & Liszt) - C₃ in near-UV (Maier, et al.) - Diffuse Interstellar Bands!