Enhanced cosmic-ray ionization toward ζ Persei inferred from storage ring measurement of dissociative recombination rate of rotationally cold H₃⁺

- ★ B. J. McCall, A. J. Huneycutt, R. J. Saykally (UC Berkeley)
- ★ T. R. Geballe (Gemini Observatory)
- ★ N. Djuric, G. H. Dunn (University of Colorado & NIST)
- ★ J. Semaniak, O. Novotny (Świetokrzyska Academy, Poland)
- ★ A. Al-Khalili, A. Ehlerding, F. Hellberg, S. Kalhori, A. Neau, F. Osterdahl, R. Thomas, M. Larsson (Stockholm University & Manne Siegbahn Laboratory)

Too Much H₃⁺ in Diffuse Clouds

- Column density 3×10¹⁴ cm⁻², just like dense cloud!
- Chemical model → n(H₃⁺) ~ 10⁻⁷ cm⁻³
- N(H₃⁺) / n(H₃⁺) → path length is 1 kpc!?
- Implies $\langle n(H) \rangle \sim 20 \text{ cm}^{-3}$ (too low)

Other Diffuse Clouds, too!

General problem with model:

H₃⁺ toward ζ Persei

McCall, et al. Nature 422, 500 (2003)

N(H₂) from Copernicus

HD	NAME	¥II.	ρ_{II}	9. T.	E(B-V) mag.	r [pc]	log N(H ₂) [cm ⁻²]	log N(HI) [cm ⁻²]	10g N(HI + H ₂) [cm ⁻²]
24398 24760 24912 28497 30614	C Per E Per ξ Per α Cam	162 157 160 209 144	-17 -10 -13 -37	B1 Ib B0.5 III 07.5 IIIuf B1.5 Ve 09.5 Ia	.33 .09 .33 .02	394 308 538 466 1164	20.67 19.53 20.53 14.82 20.34	20.81 20.40 21.11 20.20 20.90	21.20 20.50 21.30 20.20 21.09

Savage et al. ApJ 216, 291 (1977)

N(C+) from HST

Cardelli et al. ApJ 467, 334 (1996)

H₃⁺ Dissociative Recombination

- Laboratory values of k_e varied by 4 orders of magnitude!
- Even worse: theory in infancy, way off...
- Big problem: not measuring H₃⁺ in ground states

Storage Ring Measurements

- + Complete vibrational relaxation
- + Very simple experiment
- + Control H₃⁺ e⁻ impact energy
- Rotationally hot ions produced
- No rotational cooling in ring

Berkeley Supersonic Ion Source

 H₃⁺ produced is rotationally cold, as in interstellar medium

CRYRING Results

- Structure (resonances) in the cross-section
- $k_e = 2.6 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$
- Chris Greene's theory

Rules

McCall, et al. Nature 422, 500 (2003)

Implications for ζ Persei

$$\frac{N(H_3^+)}{L} = [H_3^+] = \frac{\zeta}{k_e} \frac{N(H_2)}{N(e^-)}$$

$$\zeta L = (2.6 \times 10^{4} \text{ cm}^{3} \text{ s}^{-1}) N (10^{4} \text{ s}^{-1})$$

$$\zeta L = 8000 \text{ cm s}^{-1}$$

What Does This Mean?

- Enhanced cosmic-ray flux in ζ Persei
- Widespread H₃⁺ in diffuse clouds
 - perhaps widespread cosmic-ray enhancement?
- Dense cloud H₃⁺ is "normal"
 - enhanced cosmic-ray flux only in diffuse clouds
 - low energy component?
 - no constraints, aside from chemistry!!
- Substantial impact on diffuse cloud chemistry
 - more frequent ion-neutral reactions
 - enhanced oxygen chemistry (H⁺ + O → O⁺ + H)

Future Work

- Search for H₃⁺ in more UV-accessible sightlines
 - "Direct" probe of cosmic-ray flux
 - [Non-detections in o Persei, ζ Ophiuchi ?]
- Observations of H₃⁺ in heavily reddened sources
 - Fall-off in cosmic-ray flux
 - Transition of C⁺ → CO
- Comprehensive study of ζ Persei
 - Review all constraints on density, path length
 - Model cloud structure, inhomogeneities

Rich Diffuse Cloud Chemistry

- From 1930s through the mid-1990s, only diatomic molecules thought to be abundant in diffuse clouds
- Since 1998, many polyatomics observed:
 - H₃⁺ in infrared
 - HCO⁺, C₂H, C₃H₂ in radio (Lucas & Liszt)
 - C₃ in near-UV (Maier, et al.)
- Diffuse Interstellar Bands!