H$_3^+$ in Diffuse Interstellar Clouds: A Tracer for the Cosmic-Ray Ionization Rate

Nick Indriolo1, Thomas R. Geballe2, Takeshi Oka3, and Benjamin J. McCall1

1 University of Illinois at Urbana-Champaign
2 Gemini Observatory
3 University of Chicago

June 19, 2007
Motivations

• H_3^+ is the cornerstone of ion-molecule reactions in the interstellar medium (ISM)
• Simple chemistry allows for the inference of various physical parameters (density, temperature, ionization rate, cloud size)
Observations

adapted from McCall et al. (1999)

CGS4 spectrometer on the United Kingdom Infrared Telescope (UKIRT)

June 19, 2007
Atmospheric Interference

- complex of CH$_4$ lines centered at 36675.3 Å reduces transmission to about 50%
- various HDO lines also crowd the region and cut transmission to about 80%
- H$_3^+$ lines only have about 1-2% absorption, so a high S/N is necessary
Detections

June 19, 2007
Non-detections
Relating column density to cosmic-ray ionization rate

- **Formation pathway**
 - $\text{CR} + \text{H}_2 \rightarrow \text{CR} + \text{H}_2^+ + \text{e}^-$
 - $\text{H}_2 + \text{H}_2^+ \rightarrow \text{H}_3^+ + \text{H}$

- **Destruction mechanism**
 - $\text{H}_3^+ + \text{e}^- \rightarrow \text{H}_2 + \text{H}$ or 3H

- Using the steady-state approximation we obtain...

\[
 n(\text{H}_2) \zeta_2 = k_e n(\text{H}_3^+) n(\text{e})
\]

\[
 n(\text{H}_3^+) = \frac{N(\text{H}_3^+)}{L} \quad f = \frac{2n(\text{H}_2)}{n_H}
\]

\[
 n_H = n(\text{H} \text{ I}) + 2n(\text{H}_2)
\]

\[
 \zeta_2 = N(\text{H}_3^+) \frac{k_e}{L} \frac{2}{f} \frac{n(\text{e})}{n_H}
\]
Variables & Assumptions

\[\zeta_2 = N(H_3^+) \frac{k_e 2 n(e)}{L f n_H} \]

- \(N(H_3^+) \) is measured
- \(k_e \) is known from experiments (\(\sim 10^{-7} \text{ cm}^3 \text{ s}^{-1} \))
- \(n(e)/n_H \) is relatively constant in diffuse clouds (\(1.4 \times 10^{-4} \) assuming electrons come from ionized carbon)
- 2 is certainly still 2

- \(f \) can be approximated using measured H I and H\(_2\) column densities

\[L = N_H/n_H \]
- \(N_H \) can be measured or estimated from \(E(B-V) \)
- \(n_H \) is estimated in various ways (C I levels, C\(_2\) levels, \(J=4 \) level of H\(_2\))

- \(\zeta_2 = 2.3 \zeta_p \)

\[\zeta_p = \frac{2}{2.3} N(H_3^+) \frac{n_H}{f} \frac{k_e}{N_H} \left[\frac{n(e)}{n_H} \right] \]
Results

<table>
<thead>
<tr>
<th>Object</th>
<th>(N(\text{H}_3^+)) ((10^{14} \text{ cm}^{-2}))</th>
<th>(\zeta_p) ((10^{-16} \text{ s}^{-1}))</th>
<th>Object</th>
<th>(N(\text{H}_3^+)) ((10^{14} \text{ cm}^{-2}))</th>
<th>(\zeta_p) ((10^{-16} \text{ s}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD 20041</td>
<td>1.6</td>
<td>2.9</td>
<td>HD 21483</td>
<td>< 2.2</td>
<td>< 5.7</td>
</tr>
<tr>
<td>HD 21389</td>
<td>1.0</td>
<td>1.8</td>
<td>40 Per</td>
<td>< 0.9</td>
<td>< 2.6</td>
</tr>
<tr>
<td>ζ Per</td>
<td>0.7</td>
<td>3.2</td>
<td>ε Per</td>
<td>< 0.5</td>
<td>< 2.4</td>
</tr>
<tr>
<td>X Per</td>
<td>0.8</td>
<td>3.1</td>
<td>ζ Per</td>
<td>< 0.5</td>
<td>< 4.5</td>
</tr>
<tr>
<td>HD 169454</td>
<td>0.6</td>
<td>0.9</td>
<td>62 Tau</td>
<td>< 2.7</td>
<td>< 14</td>
</tr>
<tr>
<td>HD 229059</td>
<td>3.9</td>
<td>2.9</td>
<td>o Sco</td>
<td>< 0.5</td>
<td>< 0.9</td>
</tr>
<tr>
<td>BD -14 5037</td>
<td>0.6</td>
<td>0.5</td>
<td>W40 IRS 1a</td>
<td>3.4</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HD 147889</td>
<td>< 0.6</td>
<td>< 1.6</td>
</tr>
<tr>
<td>WR 104</td>
<td>2.3</td>
<td>1.4</td>
<td>ζ Oph</td>
<td>< 0.3</td>
<td>< 1.5</td>
</tr>
<tr>
<td>WR 118</td>
<td>6.5</td>
<td>2.0</td>
<td>HD 168625</td>
<td>< 0.8</td>
<td>< 0.8</td>
</tr>
<tr>
<td>WR 121</td>
<td>2.2</td>
<td>1.7</td>
<td>λ Cep</td>
<td>< 0.8</td>
<td>< 1.3</td>
</tr>
<tr>
<td>Cyg OB2 12</td>
<td>3.8</td>
<td>1.8</td>
<td>HD 168607</td>
<td>< 0.6</td>
<td>< 0.5</td>
</tr>
<tr>
<td>Cyg OB2 5</td>
<td>2.6</td>
<td>1.5</td>
<td>HD 194279</td>
<td>< 1.2</td>
<td>< 1.3</td>
</tr>
<tr>
<td>HD 183143</td>
<td>2.3</td>
<td>2.3</td>
<td>χ^2 Ori</td>
<td>< 0.7</td>
<td>< 2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P Cyg</td>
<td>< 0.6</td>
<td>< 1.2</td>
</tr>
</tbody>
</table>

June 19, 2007
Cosmic-Ray Ionization Rates: Measured and Modeled

\[\zeta_p \left(10^{-16} \text{ s}^{-1}\right) \]

<table>
<thead>
<tr>
<th>ζ Per</th>
<th>ι Per</th>
<th>ε Per</th>
<th>ζ Per</th>
<th>ζ Oph</th>
<th>Reference</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td><5.0</td>
<td><2.4</td>
<td><4.5</td>
<td><1.5</td>
<td>this work</td>
<td>H_3^+</td>
</tr>
<tr>
<td>0.22</td>
<td>2.50</td>
<td>0.01</td>
<td>0.06</td>
<td>0.17</td>
<td>Hartquist et al. (1978)</td>
<td>OH & HD</td>
</tr>
<tr>
<td>0.17</td>
<td>1.30</td>
<td>…</td>
<td>≤0.26</td>
<td>…</td>
<td>Federman et al. (1996)</td>
<td>OH & HD</td>
</tr>
<tr>
<td>1-2</td>
<td>≥8</td>
<td>…</td>
<td>…</td>
<td>≥4</td>
<td>van Dishoeck & Black (1986)</td>
<td>models</td>
</tr>
<tr>
<td>5.2</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>McCall et al. (2003)</td>
<td>H_3^+</td>
</tr>
<tr>
<td>2.5</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>Le Petit et al. (2004)</td>
<td>models</td>
</tr>
</tbody>
</table>
Possible Explanations for Differences

- smaller value of k_e used in the past
- charge transfer H^+ to O is endothermic
- grain neutralization ‘removes’ H^+
- $N(\text{D I})/N(\text{H I})$ overestimates deuterium fraction n_D/n_H
Conclusions

- H_3^+ is common and abundant in diffuse interstellar clouds.
- Due to its simple chemistry, H_3^+ can be used to infer the cosmic-ray ionization rate ζ_p in diffuse clouds is relatively constant and an order of magnitude larger than previously believed.
Future Prospects

• Observing run at UKIRT June 29-July 2 to re-visit 4 sightlines and investigate 4 new sightlines
• 36 hours in January at UKIRT to get better S/N on Perseus sources
• Proposal submitted for time on Gemini South in December to investigate the diffuse ISM in the Large Magellanic Cloud
Acknowledgments

- UKIRT staff
- NSF
- References

June 19, 2007