A Search for C_4 and C_5 in the (Molecular) Carbon-Rich Sightline toward HD 204827

Máté Ádámkovics (UC Berkeley), Geoffrey A. Blake (Caltech), Ben McCall (University of Illinois)
C$_2$: The Shortest Carbon Chain

 - Cygnus OB2 12, A-X 1-0 band near 10150 Å
- Modern spectra: usually 2-0 band near 8750 Å

- Rotational excitation
 - provides n, T estimates
Triatomic Carbon: C_3

- Detected toward ζ Oph, ζ Per, 20 Aql
 - $A \ ^1\Pi_u - X \ ^1\Sigma_g^+$ 0-0 band
 - first seen by Huggins in a comet in 1881

APO Survey Yields C$_3$

- Lower resolution survey for DIBs
- Detected unresolved C$_3$ profiles in 15 sightlines

Full Excitation Model of C$_3$

- Roueff et al. 2002
 - detected C$_3$ toward HD 210121
 - developed full excitation model → n, T

Keck/Lick Survey of C$_3$

- High signal/noise
- High resolution
- Fit each N(J) independently
- 10 sightlines

A Search for C$_4$ & C$_5$

- ζ Oph (V=2.56)
- CFHT, S/N~4000
- Comparison with Maier lab spectra
 - C$_4$ $^3\Sigma_u - ^3\Sigma_g$ - 3789Å
 - C$_5$ $^1\Pi_u ? - ^1\Sigma_g^+$ - 5109Å
- Non-detection

Keck Search for C_4 & C_5

- HD 204827 ($V=7.94$)
- Keck, 2 nights integration \rightarrow S/N\sim1000

Ádámkovics, Blake, & McCall, in preparation
Comparison of Results

<table>
<thead>
<tr>
<th></th>
<th>ζ Oph (Maier et al.)</th>
<th>HD 204827 (present work)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_2</td>
<td>2.5×10^{13} (250)</td>
<td>4.4×10^{14} (630)</td>
</tr>
<tr>
<td>C_3</td>
<td>1.6×10^{12} (16)</td>
<td>1.1×10^{13} (16)</td>
</tr>
<tr>
<td>C_4</td>
<td>$< 5 \times 10^{11}$ (<5)</td>
<td>$< 4 \times 10^{12}$ (<6)</td>
</tr>
<tr>
<td>C_5</td>
<td>$< 1 \times 10^{11}$ (<1)</td>
<td>$< 7 \times 10^{11}$ (<1)</td>
</tr>
</tbody>
</table>

Column density in molec cm$^{-2}$ ratio to C_5
Comparison to Roueff Model

Model greatly overpredicts C4, C5

Table: HD 204827

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>4.4 ×10^{14}</td>
<td>(630)</td>
</tr>
<tr>
<td>C3</td>
<td>1.1 ×10^{13}</td>
<td>(16)</td>
</tr>
<tr>
<td>C4</td>
<td>< 4 ×10^{12}</td>
<td>(<6)</td>
</tr>
<tr>
<td>C5</td>
<td>< 7 ×10^{11}</td>
<td>(<1)</td>
</tr>
</tbody>
</table>

--

\(n_H = 1500 \text{ cm}^{-3}, \chi = 0.5 \)
Carbon Chain Chemistry

Key to Reaction Types:
Photodissociation
Radiative association
Dissociative recombination
C+ ion-molecule
H2 ion-molecule

Key to Reaction Rates:

\[\text{< 10}^{-12} \text{ s}^{-1} \]
\[\sim 10^{-10} \text{ s}^{-1} \]
\[\sim 10^{-8} \text{ s}^{-1} \]
\[\sim 10^{-6} \text{ s}^{-1} \]

[assume: \(n_H \sim 500 \text{ cm}^{-3} \)]

\[\text{C}^+ + \text{C}_n \rightarrow \text{C}_{n+1}^+ + \text{hv} \]

Freed, Oka, & Suzuki
Needs

• Photodissociation cross-sections
 – especially for C_n
• Rate coefficients
 – radiative association $C^+ + C_n$
 – ion-molecule, esp. $C_5H^+ + H_2$
• Oscillator strengths
• UV spectra of C_4 & C_5
 – would enable more sensitive search
• Chemical models of diffuse clouds
Conclusions

- C_4 & C_5 still not yet detected
- Longer chains seem not very abundant
 - still potential DIB carriers if $f > 1$
 - only demonstrated for C_n
- Need better chemical models
 - understand low C_4 & C_5 column densities
 - investigate abundance of other species
Acknowledgements

- NASA Laboratory Astrophysics
- NSF CAREER Award
- Dreyfus New Faculty Award
- ACS PRF Starter Grant
- University of Illinois
- McCall Group