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Abstract. We present dissociative recombination measurements, using the CRYRING ion storage ring,
of H+

3 ions produced in a supersonic expansion discharge source. Before and after the CRYRING
measurements, the ion source was characterized in Berkeley using infrared cavity ringdown spectroscopy,
and was found to exhibit a typical rotational temperature of ∼ 30 K. Our measurement of the dissociative
recombination cross section using this ion source revealed resonances that had not been observed clearly
in previous experiments that used rotationally hot ion sources. Based on the present measurements,
we infer a thermal dissociative recombination rate coefficient for ions at interstellar temperatures of
∼ 2.6 × 10−7 cm3s−1. Our results are in general agreement with theoretical calculations of the dissociative
recombination cross section by Kokoouline and Greene. We will review the enigma of the abundance of
H+

3 in the diffuse interstellar medium, and discuss the impact of these experiments, especially in the context
of the recent observation of H+

3 towards ζ Persei.

1. Introduction

The dissociative recombination (DR) of H+
3 is not only fundamentally important (as H+

3 is the simplest
polyatomic molecule), but is also of great importance to astrophysics. In diffuse interstellar clouds,
electrons are produced by photoionization of atomic carbon by starlight, and the resulting electron
abundance is high enough that DR is the dominant destruction mechanism for H+

3 . The unexpected
discovery [1,2] of abundant H+

3 in diffuse clouds suggested a discrepancy of two orders of magnitude in
the assumed value of either the H+

3 DR rate coefficient, the electron fraction, the cosmic-ray ionization
rate, or the size of the diffuse clouds. Of these quantities, only the H+

3 DR rate can be pinned down by
laboratory experiments; however, various experimental measurements have varied by as much as four
orders of magnitude (see recent reviews by Larsson [3] Plasil et al. [4], and Oka [5]).

During the Fifth International Conference on Dissociative Recombination, held in Chicago in 2001,
there was a great deal of discussion about the possible dependence of the H+

3 DR rate on the ion’s
rotational quantum state. Larsson [6] presented data that had recently been obtained at the CRYRING
ion storage ring in Stockholm showing indications of a dependence of the DR cross-section on the
conditions in their hollow cathode discharge source. Following this presentation, one of us (McCall) was

Institute of Physics Publishing Journal of Physics: Conference Series 4 (2005) 92–97
doi:10.1088/1742-6596/4/1/012 Sixth International Conference on Dissociative Recombination

92© 2005 IOP Publishing Ltd



discussing this issue with C. Michael Lindsay, and the idea of using a supersonic expansion discharge
source for storage ring measurements was born. At this time, McCall had just begun a Miller Fellowship
at UC Berkeley, and was working in Saykally’s group. In the fall of 2001, Larsson visited Berkeley
as a Visiting Miller Professor, and McCall, Larsson, Huneycutt, and Saykally resolved to construct a
supersonic expansion ion source and use CRYRING to measure the DR rate of rotationally cold H+

3 ions.
The remainder of this paper describes the construction and spectroscopic characterization of the

supersonic expansion ion source, presents the results of the DR measurements performed at CRYRING,
and discusses the implications of these results on the enigma of H+

3 in diffuse interstellar clouds. A
preliminary report on the storage ring measurements was published in [7], and a more detailed description
is in press [8].

2. Supersonic expansion ion source

In a supersonic expansion, a “high” temperature gas at “high” pressure is adiabatically expanded into a
vacuum, resulting in a jet of molecules that are internally cold but still in the gas-phase. Such sources
have been used for molecular spectroscopy of stable molecules for decades, as reviewed by Levy [9].
The incorporation of a discharge with a supersonic expansion source to produce rotationally cold ions
was pioneered by Engelking and coworkers [10] in the early 1980s, and is by now a standard tool for
molecular spectroscopists.

In Berkeley, we (McCall, Huneycutt, and Saykally) constructed a supersonic expansion ion source
designed to produce rotationally cold H+

3 for storage ring experiments; our final source design is shown in
figure 1. The heart of the source is a 500 µm circular pinhole, which forms the nozzle for the expansion.
Hydrogen gas (at ∼2 atm of pressure) is pulsed through this nozzle by a poppet controlled by a solenoid
valve, which produces pulses of gas ∼400 µs in width. The repetition rate of the pulses can be varied
over a wide range: for spectroscopic characterization, we used a 50 Hz repetition rate; for the DR
measurements we use a ∼ 0.1 Hz repetition rate. To produce H+

3 from the H2, a discharge is struck
between the plate containing the nozzle and a ring electrode (separated from the nozzle by an insulating
spacer). The ring electrode is typically biased at approximately −800 V with respect to the nozzle.

In order to verify that the source produced rotationally cold H+
3 ions, we characterized the expansion

using infrared cavity ringdown laser absorption spectroscopy (figure 2). In short, a Nd:YAG laser is
used to pump a tunable pulsed dye laser, operating around 660 nm. The dye laser light is then sent into
a multipass cell containing a high pressure (∼14 atm) of hydrogen gas, which redshifts the radiation
through a stimulated Raman scattering process. After three Stokes shifts, pulses of tunable infrared
radiation (near 3.6 µm) are produced. The infrared pulses are then sent into a cavity formed by two
highly reflective (R ∼ 0.9998) mirrors, and the radiation emerging from the other side of the cavity is

Figure 1. Cross-section of the supersonic expansion
ion source (not to scale).

Figure 2. Infrared cavity ringdown laser absorption
spectroscopy setup [11].
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monitored with an InSb detector. The detector sees an exponential decay of the radiation, and the time
constant of this decay is related to the total losses inside the cavity. When the supersonic expansion is
placed inside the cavity, the ions produce additional losses at the frequencies of the H+

3 transitions; thus,
by scanning the dye laser we can record an absorption spectrum of the H+

3 ions.
A typical cavity ringdown spectrum of the ion source is shown in figure 3, along with a spectrum

of interstellar H+
3 in the sightline towards ζ Persei [7], for comparison. The relative intensities of the

R(1,0) and R(1,1)u absorption lines of the H+
3 fundamental band are similar in the laboratory spectrum

and the interstellar spectrum, indicating that the supersonic expansion source is producing ions with a
similar rotational distribution to that in the interstellar medium. These two transitions arise from the two
lowest rotational levels, J = 1,K = 0 (ortho) and J = 1,K = 1 (para). The “temperature” defined by the
relative intensity of these two lines is typically ∼30 K when the source is operating normally. We also
searched for the R(2,2)l transition from the next-lowest rotational level J = 2,K = 2, but we were unable
to detect it. Given our sensitivity limit, our non-detection is consistent with a rotational temperature of
< 50 K.

After an extended period of source operation at 50 Hz, we found that the source started producing
H+

3 ions with a higher temperature (sometimes in excess of 100 K). This higher temperature was obvious
from a strengthening of the R(1,0) transition, and was confirmed by observation of the R(2,2)l line. After
some investigation, we determined that the transition to high temperature ion production was caused by
deformation of the Teflon poppet that forms the seal with the pinhole nozzle. In order to guard against
the possibility that the source had “heated up” during the course of the storage ring measurements, we
spectroscopically characterized the source both before and after the storage ring measurements, to ensure
the ions were produced at low temperature.

3. CRYRING measurements

The supersonic expansion ion source was first used at the CRYRING (Manne Siegbahn Laboratory,
Stockholm) in May of 2002. When mounted on the end-station at CRYRING, the entire source assembly
is floated to +30 kV, in order to give the ions an initial acceleration towards the ring. At that time, we had
not yet implemented the skimmer shown in figure 1, and we found that arcing occurred from the source
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assembly to the nearest ground point every time the source fired. This arcing exceeded the current limit
of the power supplies that held the source at +30 kV, and consequently the ions were not receiving the
correct acceleration into the ring. While some data on the DR cross-section were collected, the statistics
were very poor because of the difficulties with ion injection.

We interpreted this problem as due to the high ion current that was off the axis leading into the ring.
To eliminate this off-axis current, we modified the source to include a skimmer, which was held at the
same potential as the source body. The addition of the skimmer was not found to affect the temperature
of the ions as measured spectroscopically upstream of the skimmer; our sensitivity was not high enough
to measure the ion temperature after the skimmer.

In September 2002, we repeated the CRYRING measurements with the skimmer in place. Once
sufficient statistics had accumulated, a remarkable amount of structure in the cross-section curve was
immediately apparent. Figure 4 displays the final results of this run. Although the large peak near 10 eV
had been well-known, the rest of the structure in this curve had never been seen in previous experiments
with rotationally hot ions. We interpret this as evidence that the H+

3 ions used in these DR measurements
are, in fact, rotationally colder, such that the resonances due to individual quantum states are apparent
(as fewer quantum states are populated).

During this experimental run, we were very much concerned about the possibility that the H+
3 ions

might be heated by electron impact in the electron cooler. The cross-sections for this process have since
been published [12], but were not available at the time. To attempt to minimize such a heating effect,
we performed a set of measurements in which the relative energy between ions and electrons was kept
below the lowest threshold for electron impact excitation. To attempt to enhance such a heating effect, we
also performed a set of measurements in which the relative energy between ions and electrons was kept
just above threshold for 1.5 s, before making the cross-section measurements. These tests are described
in more detail in [8], but we were not able to see any effect on the observed cross-section, which we
interpret as an indication that this heating effect is not significant under the conditions of our experiment.

At about the same time as these measurements were performed, Chris Greene and Viatcheslav
Kokoouline [13] had refined their theoretical calculations of the H+

3 DR cross-section. As discussed
in more detail in [8], the agreement between their calculations and our experiment is remarkably good
(considering that experiment and theory have historically differed by orders of magnitude).

There remain some lingering uncertainties that make us hesitant to claim that we have definitively
measured the DR cross-section of H+

3 in its two lowest rotational levels, and that our value is exactly the
right value for the interstellar case. If every detail of the theoretical calculations is to be counted on, the
discrepancies between our experiment and the theory may indicate that some rotational excitation has
occurred (either in the extraction from the ion source or in the ring itself). To take the most skeptical
view, there is the added worry that the conditions in a storage ring (magnetic fields of ∼ 300 Gauss and
electron densities of ∼ 107 cm−3) are wildly different from those in the interstellar medium (10−6 Gauss
and 10−2 cm−3). Additionally, some experiments [14] still seem to point to lower DR rate coefficients,
and the discrepancies are yet to be understood.

Consequently, we do not consider the matter of H+
3 DR to be a closed book, but we argue that the

present results are the most appropriate ones to use in modeling H+
3 in the interstellar medium, as they

have been obtained under the well-controlled conditions of a storage ring, using ions that are known to be
in the vibrational ground state and that are almost certainly much cooler rotationally than in any previous
experiments.

4. Interstellar implications

Let us now consider the implications of these measurements for H+
3 in the diffuse interstellar medium.

In diffuse clouds (just as in dense clouds), H+
3 is produced in a two-step process: cosmic-ray ionization

of H2 to form H+
2 , followed by the fast ion-neutral reaction H+

2 + H2 → H+
3 + H. The rate limiting step in

the formation is the cosmic-ray ionization, and the rate of this step is expressed as ζ n(H2), where ζ is the
cosmic-ray ionization rate (usually taken to be ∼ 3 × 10−17 s−1), and n(H2) is the number density of H2.
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The dominant destruction mechanism for H+
3 is DR: H+

3 + e− → H2 + H or H + H + H. The rate for this
process can be written as ken(H+

3 ) n(e), where ke is the thermal rate coefficient for DR at the temperature
of the diffuse cloud. If we take the temperature as that computed from the relative intensity of the R(1,0)
and R(1,1)u transitions in the diffuse clouds toward ζ Persei (reported in [7] and reproduced in figure 3),
we find T = 23 K. By convolving the cross-section in figure 4 with a thermal distribution of electrons at
23 K, we find ke = 2.6 × 10−7 cm3s−1. Incidentally, this value is about a factor of two lower than values
obtained in storage ring measurements with rotationally hot H+

3 .
The evolutionary timescales in diffuse clouds are much longer than the chemical timescales, and it is

a very good approximation to assume that the cloud is in a chemical steady state: the rate of formation
of H+

3 is equal to the rate of destruction of H+
3 . Equating the two rate expressions above, we find

n(H+
3 ) =

ζ
ke

n(H2)
n(e)

. (1)

The number density of H+
3 is evidently a constant in diffuse clouds, as it is just the product of a ratio of

two constants (ζ /ke) and the reciprocal of the electron fraction n(e)/n(H2), which is also a constant (that
is, independent of density) in diffuse clouds. Consequently, we can write the observed column density
of H+

3 as N(H+
3 ) = n(H+

3 ) L, where L is the path length through the diffuse cloud. With this substitution,
(1) can be rewritten as

ζ L = ke N(H+
3 )

n(e)
n(H2)

. (2)

Let us consider the specific case of the ζ Persei cloud. In this sightline, ultraviolet measurements
of H2 [15] and of C+ (which is a proxy for electrons) [16] have determined the electron fraction
n(e)/n(H2) = 3.8× 10−4. The spectrum in figure 3 implies that the H+

3 column density is N(H+
3 ) =

8× 1013 cm−2 [7]. Finally, the CRYRING experiments suggest ke = 2.6× 10−7 cm3 s−1. Putting this
together, we find ζ L ∼ 8000 cm s−1. This is a robust result, but it does not determine the individual
values of ζ and L.

If we adopt the “canonical” value for the cosmic-ray ionization rate, ζ ∼ 3×10−17 s−1, we derive a
path length L = 85 parsecs (1 parsec ∼ 3×1018 cm). This seems unrealistically long for a diffuse cloud,
and given the total amount of hydrogen along the line of sight, this length would imply an unreasonably
low average number density of only 6 cm−3! This seems to be out of the question. On the other hand, we
could adopt an average number density inferred from the observed excitation of C2 and CO molecules, or
that derived from detailed cloud models that consider the relative abundance of H and H2 [17]. Each of
these methods has its own drawbacks, but all are consistent with an average number density between 100
and 500 cm−3. If we adopt the value 250 cm−3, this implies a path length of L = 2.1 parsecs. Plugging
this into ζ L = 8000 cm s−1, we derive ζ = 1.2×10−15 s−1, some forty times higher than the “canonical”
value.

It has often been argued that such a high cosmic-ray ionization rate is inconsistent with observations
of the OH column density (OH is formed following the charge exchange reaction H+ + O → O+ + H, and
the H+ comes from cosmic-ray ionization of H). However, a recent chemical model calculation taking
into account the endothermicity of this charge exchange reaction [18] has demonstrated that a higher
than canonical value of ζ cannot be excluded based on the OH observations.

However, such a high value of ζ (1.2×10−15 s−1) remains surprising. In particular, one wonders how
this high value in diffuse clouds can be reconciled with the much lower value (3× 10−17 s−1) that has
been inferred for dense clouds by many different measurements (including H+

3 ! [19]). One interpretation
(perhaps too simple) is that these observations are revealing the existence of a large flux of low energy
cosmic rays, which have sufficient energy to penetrate into diffuse clouds but not enough to penetrate
dense clouds. Another possible interpretation (John Scalo, private communication) is that cosmic rays
have difficulty penetrating denser clouds due to magnetic effects.
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5. Conclusions

Our dissociative recombination measurements (performed at CRYRING) using rotationally cold H+
3 ions

produced in a supersonic expansion ion source favor a DR rate coefficient of 2.6 × 10−7 cm3s−1 for H+
3

at a temperature of 23 K, about a factor of two lower than previous storage ring measurements with
rotationally hot ions. For the first time, clear resonances are seen in the DR cross-section, and the results
are in reasonable agreement with theoretical calculations [13].

Despite this apparent accord, we strongly encourage additional work on this key system, both
experimentally and theoretically. Significant discrepancies remain between theory and experiment,
and measurements using other techniques [14, e.g.] still yield considerably lower values of the DR
rate coefficient. Because of the importance of H+

3 DR both to fundamental molecular physics and to
astrophysics, it is imperative that these discrepancies be resolved.
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