Elucidating the Mechanism by Which Ball Plasmoids are Stabilized Using Emission Spectroscopy <u>Amber N. Rose</u>,¹ Scott E. Dubowsky,¹ Nick Glumac,² Benjamin J. McCall³

¹ Department of Chemistry, University of Illinois at Urbana-Champaign ² Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign ³Departments of Chemistry and Astronomy, University of Illinois at Urbana-Champaign

Introduction

Ball lightning is a unique, naturally-occurring atmospheric phenomenon associated with thunderstorms [1]. Although ball lightning has been known to exist since the Middle Ages, it still lacks a complete physical and chemical explanation regarding its formation and lifetime. Considered to be laboratory analogues of ball lightning, ball plasmoids are the result of water-based plasma discharges performed in air. They are produced by a high voltage, high current discharge above the surface of a weakly conductive electrolyte. Plasmoids have a definite spherical shape and are not constricted to a power source, as are regular plasmas. Based upon recombination rates expected for a plasma of this type, the plasmoids should dissipate in about a millisecond- but like ball lightning, they are observed to last for hundreds of milliseconds [2].

Instrument Setup

- High voltage, capacitive discharge system
- Electrode: tungsten rod (cathode) insulated with an alumina tube and a copper ring (anode) placed perpendicularly to cathode
- Setup contained in a 5-gallon bucket of weakly conductive electrolyte (deionized water, conductivity set using concentrated HCI)

Figure 1. Simplified circuitry and electrode setup used to produce a plasmoid.

Variable Parameters:

- Capacitance (870 μ F and 1700 μ F)
- Voltage (5,000-8,000 V)
- Height above cathode (0, 10, 20, 30, 40 cm)

we have observed a much richer plasmoid chemistry than has previously been observed.

Figure 6. A series of spectra obtained at various heights above the Figure 5. An example emission spectrum from a ball plasmoid discharge, cathode (7 kV, 300 μ S) (note: the comparison is qualitative. comparing intensities at different capacitances (8 kV, 200 μ S).

References

[1] Dubowsky, S. E.: Friday, D.M.; Peters, K.C.; Zhao, Z.; Perry, R. H.; McCall, B.J. Int. J. Mass Spectrom. 2015, 376, 39-45. [2] Dubowsky, S. E.; Deutsch, B. Bhargava, R.; McCall, B. J. J. Mol. Spec. 2016, 322, 1-8. [3] Stephan, K.D.; Dumas, S.; Komala-Noor, L.; McMinn, J. Plasma Sources. Sci. Technol.2013, 22, 2.

[4] Dubowsky, S. E.; Rose, A. N.; Glumac, N.; Eden, J. G.; McCall, B. J. Spectroscopic Diagnostics of Ambient Ball Plasmoid Discharges: Revealing the Underlying Physical Chemistry of Ball Lightening. *Turkey Run Analytical Conference*. **2016**.

Acknowledgements

We would like to thank Professor J. Gary Eden (UIUC) for discussions on the microwave interferometer experiment.

Results

Table 1. Rotational temperatures of various species across the lifetime of a plasmoid (7 kV, 300 μ S, 870 μ F).

Spectrum	OH [K]	NH [K]	AIO [K]
1	-	-	900 ± 200
2	7200 ± 900	4000 ± 800	600 ± 100
3	6400 ± 800	-	-
4	5100 ± 700	-	-
5	4900 ± 700	-	-
			_

Dashes represent an unphysical fit or no emission from the species.

Table 2. Rotational temperatures of various species across the lifetime of a plasmoid (7 kV, 300 μ S, 1700 μ F).

Spectrum	OH [K]	NH [K]	AIO [K]
1	-	-	1000 ± 200
2	9000 ± 1000	300 ± 100	700 ± 100
3	7200 ± 900	3400 ± 800	1200 ± 200
4	6500 ± 800	-	-
5	5200 ± 700	-	-
6	5300 ± 800	-	-
7	-	-	-

Dashes represent an unphysical fit or no emission from the species.

Table 3. Atomic and molecular species that have been identified from plasmoid emission spectra.

	Species
Atomic	W (Ι), Η _β , Ν (ΙΙ), Η _α
Molecular	OH (A-X), NH (A-X), N ₂ (C-B), AlO (A-X), N ₂ (B-A)

Figure 7. Microwave interferometer design for measurement of electron density of a plasmoid [4].

Microwave interferometry is a technique that can be applied to plasma diagnostics to measure electron density and collisional frequency. In the proposed design (Figure 7), a microwave beam will pass through the plasmoid where it will be attenuated and phase shifted, while another beam will pass through a reference arm. The sum and difference of these two waves, when combined, produce a signal leading to the electron density as a function of time.