Why Study H₃⁺? Ben McCall

 ⇒ Most abundantly produced molecular ion
 ⇒ Initiates ion-neutral chemistry responsible for molecules in interstellar medium
 ⇒ Constant number density allows estimates of cloud parameters

Since H_3^+ has no electronic or rotational spectrum, it must be studied using the v_2 infrared active degenerate bending mode

Formation of H₃⁺_{Ben McCall}

<u>Step 1</u>: Cosmic-ray ionization of H₂:

$H_2 \xrightarrow{\text{cosmic ray}} H_2^+ + e^-$ Rate = $\zeta \cdot n(H_2)$

<u>Step 2</u>: Ion-Molecule reaction with H_2 : $H_2 + H_2^+ \longrightarrow H_3^+ + H$

[occurs on every collision]

The cosmic-ray ionization rate is estimated from various methods to be $\zeta \sim 3 \times 10^{-17} \text{ s}^{-1}$.

For a dense cloud, $n(H_2) \sim 10^5 \text{ cm}^{-3} \Rightarrow \text{Rate} \sim 3 \times 10^{-12} \text{ cm}^{-3} \text{ s}^{-1}.$

For a diffuse cloud, $n(H_2) \sim 10^2 \text{ cm}^{-3} \Rightarrow \text{Rate} \sim 3 \times 10^{-15} \text{ cm}^{-3} \text{ s}^{-1}.$

H₃⁺ Destruction

In Dense Clouds:

In dense clouds, H_3^+ is destroyed by ion-neutral reactions with molecules (primarily CO), leading to the variety of molecules observed using infrared and radio astronomy.

$H_{3}^{+} + CO \rightarrow HCO^{+} + H_{2}$ Rate = $k_{CO} n(H_{3}^{+}) n(CO)$

 $k_{CO} \sim 2 \times 10^{-9} \text{ cm}^3 \text{ s}^{-1}$ (measured in lab)

In Diffuse Clouds:

Since molecules (e.g. CO) are less abundant than in dense clouds, the dominant destruction path of H_3^+ is electron recombination.

$$H_3^+ + e^- \rightarrow H + H + H \quad (75\%)$$

$$\rightarrow H + H_2 \quad (25\%)$$

Rate = k_e n(H₃⁺) n(e⁻)

 $k_e \sim 2 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$ (measured in lab)

H₃⁺ Number Density Ben McCall

Assuming steady-state, the H_3^+ number density can be derived by equating the rates of formation and destruction.

In Dense Clouds:

Rearrange the equation $\zeta n(H_2) = k_{CO} n(CO) n(H_3^+)$ to find:

$$n(H_3^+) = \frac{\zeta}{k_{CO}} \frac{n(H_2)}{n(CO)} = \text{constant!}$$

(~ 1×10⁻⁴ cm⁻³)

In Diffuse Clouds:

Rearrange the equation $\zeta n(H_2) = k_e n(e^-) n(H_3^+)$ to find:

$$n(H_3^+) = \frac{\zeta}{k_e} \frac{n(H_2)}{n(e^-)} = \text{constant!}_{(\sim 4 \times 10^{-7} \text{ cm}^{-3})}$$

 \Rightarrow Note that in both cases the number density of H₃⁺, unlike most molecules, is independent of the total (hydrogen) number density!

H₃⁺ in Dense Clouds Ben McCall

These molecular clouds provided the first detections of interstellar H_3^+ . Using the CGS4 spectrometer at UKIRT, they were observed on two nights separated by nearly three months. The Earth's orbital motion caused the spectral lines of H_3^+ to be Doppler shifted – compelling evidence that the lines are genuine.

Cloud Parameter Estimates Ben McCall

Measurements of H_3^+ in dense clouds provide estimates of:

- \Rightarrow path length of cloud
- \Rightarrow mean number density of H₂
- \Rightarrow kinetic temperature

Path Length:

$$L = \frac{N(H_3^+)}{n(H_3^+)} = \frac{3 \times 10^{14} \text{ cm}^{-2}}{1 \times 10^{-4} \text{ cm}^{-3}} = 3 \times 10^{18} \text{ cm} \approx 1 \text{ pc}$$

Number Density:

$$\langle n(H_2) \rangle \sim \frac{N(H_2)}{L} \sim \frac{2 \times 10^{23} \text{ cm}^{-2}}{3 \times 10^{18} \text{ cm}} \sim 6 \times 10^4 \text{ cm}^{-3}$$

Temperature:

$$\frac{N_{ortho}(H_3^+)}{N_{para}(H_3^+)} = \frac{g_{ortho}}{g_{para}} e^{-\frac{\Delta E}{kT}} = 2e^{-\frac{32.87}{T}}$$

 \Rightarrow T ~ 25-50 K

Dense Cloud Results

Ben McCall

<u>Object</u>	<u>L(pc)</u>	<u><n(h<sub>2)></n(h<sub></u>	<u>T(K)</u>
AFGL 2136	1.3	6×10^{4}	47
W33A	1.7	5×10^4	36
MonR2/3	0.5	5×10^4	31
AFGL 961E	0.6	2×10^4	25
AFGL 490	0.4	6×10^4	26
AFGL 2591	0.7	6×10^4	38

H₃⁺ Column Densities:

Detections:		Upper Limits	<u>.</u>
AFGL 2136	$3.8 \times 10^{14} \text{ cm}^{-2}$	Orion BN	$< 2.5 \times 10^{14} \text{ cm}^{-2}$
W33A	$5.2 \times 10^{14} \text{ cm}^{-2}$	NGC 2024/2	$< 1.4 \times 10^{14} \text{ cm}^{-2}$
MonR2/3	$1.4 \times 10^{14} \text{ cm}^{-2}$	MonR2/2	$< 2.0 \times 10^{14} \text{ cm}^{-2}$
AFGL 961E	$1.7 \times 10^{14} \text{ cm}^{-2}$	AFGL 989	$< 1.2 \times 10^{14} \text{ cm}^{-2}$
AFGL 490	$1.1 \times 10^{14} \text{ cm}^{-2}$	Elias 29	$< 2.4 \times 10^{14} \text{ cm}^{-2}$
AFGL 2591	$2.2 \times 10^{14} \text{ cm}^{-2}$	M17/1	$< 11 \times 10^{14} \text{ cm}^{-2}$
		W3/5	$< 1.1 \times 10^{14} \text{ cm}^{-2}$
		S140/1	$< 0.5 \times 10^{14} \text{ cm}^{-2}$
		LkHa 101	$< 1.4 \times 10^{14} \text{ cm}^{-2}$
le. Hinkle. & Oka			

McCall, Geballe, Hinkle, & Oka ApJ, submitted

H₃⁺ in Diffuse Clouds! Ben McCall

observed at UKIRT

observed at Kitt Peak

Similar column density to dense clouds!!

McCall, Geballe, Hinkle, & Oka Science 279, 1910 (1998)

Infrared CO

Ben McCall

This spectrum of CO in absorption was obtained using CGS4 at UKIRT. The low column density, $N(CO) \sim 10^{16}$ cm⁻³, compared with $N(H) \sim 10^{22}$ cm⁻³, suggests that only about 1% of carbon is in the form of CO. This eliminates the possibility that the H₃⁺ absorption is due to dense clouds.

Diffuse Cloud Parameters Ben McCall

For Cygnus OB2 No. 12, the observed column density is $N(H_3^+) = 3.8 \times 10^{14} \text{ cm}^{-2}$ and the predicted number density is $n(H_3^+) \sim 4 \times 10^{-7} \text{ cm}^{-3}$.

Path Length:

$$L \sim \frac{N(H_3^+)}{n(H_3^+)} \sim \frac{3.8 \times 10^{14} \text{ cm}^{-2}}{4 \times 10^{-7} \text{ cm}^{-3}} \sim 1 \times 10^{21} \text{ cm} \sim 300 \text{ pc!}$$

Density:

$$[H_2] \sim \frac{N(H_2)}{L} \sim \frac{2 \times 10^{22} \text{ cm}^{-2}}{3 \times 10^{21} \text{ cm}} \sim 10 \text{ cm}^{-3}$$

Problem:	Extremely long path length!! \Rightarrow expect H ₃ ⁺ "everywhere" \Rightarrow barely consistent with linewidth
Solutions?:	$\Rightarrow \zeta \text{ may be much higher?} \\\Rightarrow k_e \text{ may be lower?} \\\Rightarrow \text{maybe it's true??}$
<u>Upcoming</u>	-> high on an extral regulation
Observations:	\Rightarrow nighter spectral resolution (constrain linewidth)
	\Rightarrow nearby objects (spatial extent of H ₃ ⁺)
	\Rightarrow other diffuse cloud sources (maybe this is a fluke?)

Galactic Center

Ben McCall

Much to our surprise, the Galactic Center sources IRS 3 (shown above) and GCS 3-2 show deep H_3^+ absorptions. In the case of IRS 3, both a narrow and a broad component was observed. Since the line of sight to the Galactic Center crosses both dense and diffuse clouds, it is difficult to separate the two contributions to the H_3^+ absorption.

$$\begin{split} \mathbf{N}_{\text{para}} &= 5.1(1.7) \times 10^{14} \text{ cm}^{-2} \\ \mathbf{N}_{\text{ortho}} &= 2.4(1.1) \times 10^{14} \text{ cm}^{-2} \\ \mathbf{N}_{\text{broad}} &= 17.5(3.9) \times 10^{14} \text{ cm}^{-2} \end{split}$$

Geballe, McCall, Hinkle, & Oka ApJ, Jan 1, 1999