Molecules in Diffuse ISM

Ben McCall

Diffuse clouds are not chemical warehouses like dense clouds. Some diatomic molecules -- H_2 , OH, NH, CH, CH⁺, CN, CO, and C_2 -- have been observed in many diffuse clouds. The triatomic molecule C_3 was tentatively detected toward the "translucent" cloud HD 147889 (see below).

A much simpler chemistry is expected in diffuse clouds because they are not completely opaque to ultraviolet starlight In dense clouds, nearly 100% of C is in the form of CO -- in diffuse clouds, this fraction is closer to 1%. At most about half of H is in the form of H₂.

Gredel & Münch, A&A 285, 640 (1994)

H₃⁺ Chemistry

Ben McCall

Formation Mechanism:

The formation for H_3^+ in diffuse clouds is the same as for dense clouds

Step 1: Cosmic-ray ionization of H₂:

$$H_2 \xrightarrow{\text{cosmic ray}} H_2^+ + e^-$$

$$Rate = \zeta \cdot n(H_2)$$

Step 2: Ion-Molecule reaction with H_2 :

$$H_2 + H_2^+ \longrightarrow H_3^+ + H$$

[occurs on every collision]

Destruction Mechanism:

Since molecules (e.g. CO) are less abundant than in dense cloud, the dominant destruction path of H_3^+ is electron recombination.

$$H_3^+ + e^- \rightarrow H + H + H$$
 (75%)
 $\rightarrow H + H_2$ (25%)
Rate = $k_e \cdot n(H_3^+) \cdot n(e^-)$
 $k_e \sim 2 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$

Steady State n(H₃⁺) Ben McCall

Assuming steady-state, the H_3^+ number density can be derived by equating the rates of formation and destruction.

Formation Rate (cosmic rays): ζ n(H₂)

Destruction Rate (recombination): $k_e n(e^-) n(H_3^+)$

Let $n(H_2) \equiv (f/2) \cdot n(\Sigma H)$, where f is the fraction of H in molecular form. Assume electrons come from ionization of C, and all C is ionized, so $n(e^-) = n(C^+) \sim n(\Sigma C)$.

$$n(H_3^+) = \frac{f\zeta}{2k_e} \cdot \frac{n(\Sigma H)}{n(\Sigma C)} = constant!$$

Adopted values:

 $\zeta \sim 10^{-17} \, \text{s}^{-1}$ (derived from observations) $f \sim \frac{1}{2}$ (inferred from models) $k_e \sim 2 \times 10^{-7} \, \text{cm}^3 \, \text{s}^{-1}$ (measured in lab) $n(\Sigma H)/n(\Sigma C) \sim 10^4$ (cosmic abundance)

 $n(H_3^+)$ is constant ~ 10^{-7} cm⁻³ which is independent of the density of the cloud!

Galactic Center

Ben McCall

Much to our surprise, the Galactic Center sources IRS 3 (shown above) and GCS 3-2 show deep H₃⁺ absorptions. In the case of IRS 3, both a narrow and a broad component was observed. Since the line of sight to the Galactic Center crosses both dense and diffuse clouds, it is difficult to separate the two contributions to the H₃⁺ absorption.

$$N_{\text{para}} = 5.1(1.7) \times 10^{14} \text{ cm}^{-2}$$

 $N_{\text{ortho}} = 2.4(1.1) \times 10^{14} \text{ cm}^{-2}$
 $N_{\text{broad}} = 17.5(3.9) \times 10^{14} \text{ cm}^{-2}$

Cygnus OB2 Number 12

Ben McCall

observed at UKIRT

observed at Kitt Peak

$$N_{para} = 2.4(3) \times 10^{14} \text{ cm}^{-2}$$

 $N_{ortho} = 1.4(2) \times 10^{14} \text{ cm}^{-2}$

Similar column density to dense clouds!!

About Cygnus OB2 #12

Ben McCall

Morgan, Johnson, & Roman PASP 66, 85 (1954)

- \star d ~ 1.7 kpc
- \star 1 ~ 80°, b ~ 0°
- \star A_V ~ 10 mag
- ★ N(H) ~ 2×10^{22} cm⁻²
- ★ $M_V \sim -10$ mag!
- ★ spectral type B5Ie
- ★ stellar wind ~ 1400 km/s
- ★ no 3.08 µm ice feature⇒ no dense clouds
- ★ strong 3.4 µm C-H band ⇒ diffuse clouds
- ★ CH, C_2 observations suggest $n \sim 300 \text{ cm}^{-3}$

Infrared CO

Ben McCall

This spectrum of CO in absorption was obtained using CGS4 at UKIRT. The low column density, $N(CO) \sim 10^{16}$ cm⁻³, compared with $N(H) \sim 10^{22}$ cm⁻³, suggests that only about 1% of carbon is in the form of CO. This eliminates the possibility that the H_3^+ absorption is due to dense clouds.

mm-wave CO

Ben McCall

These millimeter-wave spectra of CO, taken with the James Clerk Maxwell Telescope (JCMT) show CO at velocities -21, +7, and +12 km/s. The -21 km/s component is probably behind the source. The +7 and +12 km/s components are in agreement with the infrared CO and H₃⁺ absorption spectra.

1 kpc of H₃⁺?!?!?

Ben McCall

For Cygnus OB2 No. 12, the observed column density is $N(H_3^+) = 3.8 \times 10^{14}$ cm⁻² and the predicted number density is $n(H_3^+) \sim 10^{-7}$ cm⁻³.

Path Length:

McCall, Geballe, Hinkle, & Oka Science 279, 1910 (1998)

$$L \sim \frac{N(H_3^+)}{n(H_3^+)} \sim \frac{3.8 \times 10^{14} \text{ cm}^{-2}}{10^{-7} \text{ cm}^{-3}} \sim 3.8 \times 10^{21} \text{ cm} \sim 1 \text{ kpc!}$$

Density:

$$[H_2] \sim \frac{N(H_2)}{L} \sim \frac{2 \times 10^{22} \text{ cm}^{-2}}{3 \times 10^{21} \text{ cm}} \sim 10 \text{ cm}^{-3}$$

Problem: 1 kpc is over ½ the distance to star!

 \Rightarrow expect H₃⁺ "everywhere"

⇒ barely consistent with linewidth

Solutions?: $\Rightarrow \zeta$ may be too low?

 \Rightarrow k_e may be too high?

 \Rightarrow maybe it's true??

<u>Upcoming</u>

 $\underline{\text{Observations:}} \qquad \Rightarrow \text{higher spectral resolution}$

(constrain linewidth)

⇒ nearby objects

(spatial extent of H_3^+)

 \Rightarrow other diffuse cloud sources

(maybe this is a fluke?)