What is H₃⁺?

Ben McCall

- \rightarrow Equilateral triangle structure
- \rightarrow Simplest stable polyatomic molecule
- \rightarrow No stable excited electronic states
- \rightarrow No allowed rotational spectrum
- \rightarrow Laboratory spectrum obtained in 1980

Formation of H₃⁺_{Ben McCall}

<u>Step 1</u>: Cosmic-ray ionization of H₂:

 $H_2 \xrightarrow{\text{cosmic ray}} H_2^+ + e^-$ Rate = $\zeta \cdot n(H_2)$

<u>Step 2</u>: Ion-Molecule reaction with H₂:

$$H_2 + H_2^+ \rightarrow H_3^+ + H$$

[occurs on every collision]

The cosmic-ray ionization rate is estimated from various methods to be $\zeta \sim 10^{-17} \text{ s}^{-1}$. For a dense cloud with $n(H_2) \sim 10^5 \text{ cm}^{-3}$, the rate of formation of H_3^+ is $\sim 10^{-12} \text{ cm}^{-3} \text{ s}^{-1}$.

Ion-Neutral Chemistry Ben McCall

$$H_{3}^{+} + CO \rightarrow HCO^{+} + H_{2}$$
$$H_{3}^{+} + X \rightarrow HX^{+} + H_{2}$$

 $HX^{+} + Y \rightarrow XY^{+} + H$

H₃⁺ initiates a network of ion-molecule chemical reactions, leading to the production of H₂O and other molecules. Were

Earth's oceans made by H_3^+ ?

The destruction of H_3^+ in molecular cloud is dominated by reaction with the most abundant reaction partner, CO. This rate can be expressed as $k_{CO} n(H_3^+) n(CO)$.

> $k_{CO} \sim 2 \times 10^{-9} \text{ cm}^3 \text{ s}^{-1}$ (measured in lab)

H₃⁺ Number Density Ben McCall

Assuming steady-state, the H_3^+ number density can be derived by equating the rates of formation and destruction.

Formation Rate (cosmic rays): ζ n(H2)Destruction Rate (rxn with CO): k_{CO} n(CO) n(H3+)

Rearrange the equation $\zeta n(H_2) = k_{CO} n(CO) n(H_3^+)$ to find:

$$n(H_3^+) = \frac{\zeta}{k_{CO}} \frac{n(H_2)}{n(CO)} = \text{constant!}$$

 $\begin{array}{ll} \underline{Adopted \ values:} \\ \zeta \sim 10^{-17} \ s^{-1} & (derived \ from \ observations) \\ k_{CO} = 2 \times 10^{-9} \ cm^3 \ s^{-1} & (measured \ in \ lab) \\ n(H_2)/n(CO) \sim 6.7 \times 10^3 & (from \ model \ calculations) \end{array}$

 $n(H_3^+)$ is constant ~ 3×10^{-5} cm⁻³ which is independent of the density of the cloud!

H₃⁺ Transitions

Ben McCall

Telescopes & Instruments Ben McCall

United Kingdom Infrared Telescope (UKIRT) Mauna Kea, Hawaii

Cooled Grating Spectrometer 4 (CGS4) $R \sim 20,000$

Nicholas U. Mayall Telescope Kitt Peak, AZ

Phoenix Spectrometer R ~30,000

Molecular Cloud GL2136. This source provided the first detection of interstellar H_3^+ . Using the CGS4 spectrometer at UKIRT, it observed at two times separated by nearly three months. The Earth's orbital motion around the Sun caused the spectral lines of H_3^+ to be Doppler shifted – compelling evidence that the lines are genuine.

 $N_{para} = 4.0(9) \times 10^{14} \text{ cm}^{-2}$ $N_{ortho} = 3.0(6) \times 10^{14} \text{ cm}^{-2}$

> T. R. Geballe & T. Oka Nature 384, 334 (1996)

H₃⁺ – Interstellar Probe Ben McCall

Measurements of H_3^+ provide:

- \rightarrow path length of cloud
- \rightarrow number density of H₂
- \rightarrow kinetic temperature

Path Length:

$$L = \frac{N(H_3^+)}{n(H_3^+)} = \frac{3 \times 10^{14} \text{ cm}^{-2}}{3 \times 10^{-5} \text{ cm}^{-3}} = 10^{19} \text{ cm} \approx 3 \text{ pc}$$

Number Density:

$$n(H_2) = \frac{N(H_2)}{L} = \frac{10^{24} \text{ cm}^{-2}}{10^{19} \text{ cm}} = 10^5 \text{ cm}^{-3}$$

Temperature:

$$\frac{N_{ortho}(H_3^+)}{N_{para}(H_3^+)} = \frac{g_{ortho}}{g_{para}} e^{-\frac{\Delta E}{kT}} = 2e^{-\frac{32.87}{T}}$$

$$\Rightarrow$$
 T ~ 27 K

