

Mid-Infrared Continuous Wave Cavity Ringdown Spectrometer for Acquisition of the High-Resolution Spectrum of C₆₀

Brian E. Brumfield*, Jacob T. Stewart*, and Benjamin J. McCall** *Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 **Departments of Chemistry and Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Background

- •C₆₀ was originally discovered in experiments that attempted to recreate carbon star outflow chemistry[1]
- •C₆₀ has since been found in an impact crater on an earth orbiting satellite[2] and sediments related to meteorite impacts [3]
- •A high-resolution gas phase spectrum of C₆₀ has not yet been obtained which can be compared to astronomical observations
- Our goal is to obtain a rotationally resolved gas phase spectrum of C₆₀ to aid an astronomical search for this molecule

V-band (540 nm) image of outflow from IRC+10216, a well known carbon star[4]

Vibrational Spectroscopy

- •C₆₀ has no permanent dipole moment (so no rotational spectroscopy) and its electronic transitions are broad and/or forbidden
- •Vibrational spectroscopy is the way to go: C₆₀ has IR active vibrational modes at 1432, 1185, 577, and 528 cm⁻¹
- •We are trying to measure the band at 1185 cm⁻¹ because it coincides with an atmospheric window, which would enable a ground-based search for C₆₀ in the ISM

In order to perform highresolution spectroscopy at 1185 cm⁻¹ we use a quantum cascade laser (QCL) provided by collaborators at Princeton

Mid-IR Spectrometer Polarizer Power Supply Temperature | Controller

As the cavity length changes, the laser comes into resonance with the cavity, leading to a buildup of signal on the detector. When the signal reaches a predefined threshold, the AOM is turned off, and the decay of light from the cavity is measured. We place a high temperature supersonic expansion source inside the cavity to generate cold gas phase C₆₀ and use our spectrometer to measure the vibrational absorption spectrum.

Generating Gas Phase C₆₀

- •C₆₀ is a solid with a very low vapor pressure, so it must be heated to attain an appreciable amount of gas phase sample
- •We have constructed an oven capable of operating at 600°C for extended periods of time
- •Hot C₆₀ molecules from the oven are cooled by using a supersonic expansion through a pinhole on the front of the oven

•We are currently working on improvements to our oven in order to reach higher temperatures and generate more gas phase C₆₀

Graph recreated from reference [5]

Spectrometer Performance

- We have obtained rotationally resolved spectra of methylene bromide (CH₂Br₂)
- •P- and Q-branch lines have been fit to an effective Hamiltonian using Pgopher[6]
- Simulations indicate cold gas (~7 K) from supersonic jet as well as warm background gas
- •Spectrometer has a sensitivity of ~5×10⁻⁸ cm⁻¹ $Hz^{-1/2}$

Future Directions

- Install new heaters for the oven to increase the number density of C₆₀ in our expansion
- Decouple ringdown mirror mounts from our vacuum chamber to increase cavity stability
- •Scan over 1185 cm⁻¹ region for C₆₀ lines

References and Acknowledgments

- [1] Kroto et al. *Nature* **318**, 162 (1985).
- [2] Dibrozolo et al. *Nature* **369**, 37 (1994).
- [3] Becker et al. Science **291**, 1530 (2001).
- [4] Leão et al. A&A 455, 187 (2006).
- [5] Piacente et al. *J. Phys. Chem.* **99**, 14052 (1995).
- [6] Western, http://pgopher.chm.bris.ac.uk

