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The reactions of H3™ with CO and with O(P) are the two most important reactions for the destruction of Hy"
in dense interstellar clouds. These two reactions are studied with sophisticated theoretical methods that should
provide accurate predictions for the rate coefficients. The potential energy surfaces are studied with high-
level electronic structure methods. For both reactions, simple long-range expansions are shown to be sufficiently
accurate for predicting the kinetics at room temperature and lower. The kinetics is predicted from a combination
of transition state theory, trajectory simulations, and master equation analysis. For the O(*P) reaction, the
interplay between the spin—orbit and the charge—quadrupole interactions is explicitly considered. For the
CO reaction, we also consider the isomerization and decomposition dynamics of the two initially formed
adducts. The final predictions, which are expected to be accurate to about 10 to 20%, are compared with the
available experimental data. For the O(°P) reaction, the predicted rate coefficient is accurately reproduced by
the expression 1.14 x 107 (T/300) %56 exp(—1.41/T) cm® molecule ! s™! over the 5 to 400 K temperature
range. For the CO reaction, the predicted rate coefficients for the H, + HCO™ and H, + HOC™ channels are
accurately reproduced by the expressions 1.36 x 1077 (7/300) %!42 exp(3.41/T) and 8.49 x 107'° (77300)-066!
exp(—5.21/T) cm® molecule ™! s™!, respectively, over the 10 to 400 K temperature range. These revised rate
coefficient expressions imply an increase in the destruction of H;" at temperatures that are typical of dense
clouds (10—30 K) by a factor of 2.5 to 3.0.

Introduction

Since its first detection in interstellar clouds in 1996,' the
H;™ molecular ion has proven to be a powerful probe of
interstellar conditions. In recent years, considerable attention
has been devoted to the diagnostic role of Hs" in diffuse
interstellar clouds, where it is produced by cosmic-ray ionization
and destroyed by dissociative recombination with electrons. The
unexpectedly high abundance of H;™ observed in diffuse
clouds®? generated some controversy, as it was unclear whether
the adopted value of the ionization rate was too low or that of
the dissociative recombination rate coefficient was too high. A
series of storage ring experiments*® and theoretical calculations®’
finally fixed the low-temperature value of the recombination
rate, and thereby established that the cosmic-ray ionization rate
in diffuse clouds is roughly an order of magnitude higher than
previously thought.*®° This high ionization rate (which cannot
be directly measured near Earth because of the influence of the
solar wind) may be an indication of a previously unrecognized
large flux of low-energy cosmic rays.'?

Comparatively less attention has been paid to H;™ in dense
star-forming regions, where it plays the key role in initiating a
network of ion—molecule reactions that lead to the formation
of many of the ~150 known interstellar molecules.!! Since the
initial work of Geballe and Oka,! there have been many
subsequent detections of Hs" in such clouds.'?”'* All of these
detections have been interpreted using a very simple model of
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the H3™ chemistry, wherein formation by cosmic rays is balanced
in steady state by destruction by proton transfer reactions.
Considering the impact of the recent clarification of the Hy*
destruction rate in diffuse clouds (by dissociative recombina-
tion), we decided to re-examine the two dominant destruction
pathways for Hs™ in dense clouds, which are the title reactions.

In earlier analyses of dense cloud H;" (e.g., McCall et al.?),
the reaction with CO was considered to be the dominant
destruction pathway, because of its large roughly Langevin rate
coefficient of 1.7 x 107° cm® molecule™" s™1.!5 This reaction is
responsible for the production of HCO', which has been a
widely used tracer of dense cloud material since its initial
detection as the unidentified “X-ogen” line in 1970.'® The
reaction with atomic O, which according to astrochemical
models!” has a number density roughly equal to that of CO,
has long been thought to be slower, with a rate coefficient of 8
x 1071° cm® molecule™! s™1,!® and was therefore taken to be
negligible. However, it should be noted that a more recent
experiment has increased this value to 1.2 x 107 cm?®
molecule™' s71.!” This reaction initiates the production of
interstellar water and is therefore quite a critical one from an
astrochemical perspective. These two reactions have furthermore
been identified in sensitivity analyses®® as among the most
important ones in terms of the impact of their current uncertain-
ties on chemical abundances in interstellar clouds.

In the present paper, we perform state of the art calculations
using dynamically corrected transition state theory (TST) to
obtain the temperature-dependent rate coefficients of both of
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these key destruction reactions for H;™. For the O + H;"
reaction, this work builds on the earlier trajectory study of
Collins and co-workers?! by including a detailed treatment of
the effect of the spin—orbit interaction on the charge—quadrupole
interaction. Our treatment of this effect is closely analogous to
that of Gentry and Giese.?? The importance of this coupling
was nicely illustrated in a study of Herbst and co-workers on
the related reaction of C(*P) with H;™.2> We also employ a more
accurate potential energy surface than Collins and co-workers
for the O + Hi" reaction. Recent theoretical work on CO +
H;* has focused on ab initio evaluations of the stationary points
on the potential energy surface.’** Here, we focus on a detailed
analysis of the overall kinetics including a careful treatment of
the different terms in the potential and the branching between
the H, + HCO" and the H, + HOC" channels. Earlier
theoretical work also considered this rate coefficient and
branching ratio but with more limited representations of the
potential .2

The present calculations reveal that, at the low temperatures
of dense clouds, the rate of the H;™ 4+ O reaction is roughly
equal to the value previously assumed for H;y¥ + CO (and
generally taken as the entire destruction rate of Hs™"). Further-
more, the H;* + CO reaction is about 50% faster than previously
thought and produces both HCO* and HOC™ efficiently. The
cumulative result of these rate coefficient increases is that H3™
is destroyed ~2.5 times faster in dense clouds than previously
thought. As discussed below, this implies either that the lines
of sight through dense clouds are ~2.5 times longer than
previously thought or that the cosmic-ray ionization rate is ~2.5
times higher than expected. Furthermore, the production of
interstellar H,O and HOC' must be faster than assumed by
current astrochemical models.

Theory

Overview. For both reactions, a classical treatment of the
rate coefficient for capture provides a useful starting point for
the analysis. We have recently derived a version of transition
state theory (TST) that is particularly appropriate for predicting
this rate coefficient for capture at moderately low temperatures,
for example, 10—100 K.?’ This long-range TST emphasizes the
role of different terms in the long-range asymptotic potential
form and builds on the large body of theory developed for
predicting long-range capture rate coefficients.” It can be viewed
as a limiting case of our variable reaction coordinate TST
approach,?>3° with the latter providing accurate estimates for
much higher temperature via the incorporation of accurate
interaction energies and the explicit consideration of angular
momentum conservation.

For an asymptotic expansion of the long-range interaction
potential with V o< R™ (where R is the distance between the
centers-of-mass of the two reactants), the capture rate coefficient
may be expressed as?®

k= Cllu—]/ZV?)/nT]/Z—Z/n (1)

where u is the reduced mass of the system, V, specifies the
strength of the interaction, and 7 is the temperature (in energy
units). The constant C; depends on the form of the interaction
and the rotational dimension of the system but is independent
of u, Vo, T, and the reactant moments of inertia. It is determined
from simple classical phase space integrals. Explicit C; values
are provided in ref 27 for a variety of common interactions.

J. Phys. Chem. A, Vol. 114, No. 1, 2010 279

For multiple terms in the long-range expansion, the simple
analytic form of eq 1 no longer holds, but results are readily
obtained via numerical integration of low dimension phase space
integrals. Furthermore, these numerical integrations are simple
enough to incorporate direct determinations of the interaction
potential via ab initio quantum chemical simulations. Here, we
implement and compare analytic long-range potential based
results and direct ab initio potential based results employing a
variety of electronic structure methodologies. For the ab initio
potential based results, we employ our direct variable reaction
coordinate-TST approach.?!*> We also employ rigid-body trajec-
tory simulations of the capture process for long-range repre-
sentations of the potential to examine the deviations from
statistical predictions for both the overall rate coefficient and
the product branching. These trajectory simulations are per-
formed as described in refs 33 and 34.

For both reactions, there are a number of further complica-
tions that must be considered in predicting the overall rate
coefficient. In particular, for the OCP) reaction, there are
multiple electronic states, and the coupling of the spin and orbital
angular momenta to each other and to the charge—quadrupole
interaction lead to significant deviations from the classical
results.?>?* For the CO reaction, there are two distinct binding
orientations, leading to different products via two distinct
ion—molecule complexes. Furthermore, these two ion—molecule
complexes are kinetically coupled via a transition state that lies
below the energy of the reactants. Thus, it is important to
consider the branching both in the initial formation of these
complexes and in their subsequent decay to bimolecular
products.

O(CP) + H;" Reaction. The charge—quadrupole interaction
is generally the longest ranged interaction between an atom and
an ion.* Ignoring for the moment any spin—orbit interactions,
the operator for this charge—quadrupole interaction is given by
(Appendix A)

V= %(ﬁ? — 1132) )
2020 — DR © 3

where Q is the quadrupole moment of the atom, ¢ is the
electronic charge of the ion, and £? and L. are the operators for
the square of the electronic orbital angular momentum of the
atom and its projection on the axis connecting the ion and the
atom, which without loss of generality is assumed to be parallel
to the z axis. For OC’P), the electronic orbital angular momentum
[ = 1; so, the eigenvalue for [?is (I + 1) = 2, and the
eigenvalues for L. are m; = 0, £1. The eigenvalues for V in eq
2 then reduce to

0 3

This long-range potential is contrasted with that obtained from
explicit CASPT2 (second order multireference perturbation
theory employing a complete active space wave function)*® ab
initio simulations in Figure 1. The CASPT2 -calculations
employed a six electron six orbital (6e,60) active space
consisting of the three valence orbitals of H3 and the three p
orbitals of the O atom. They employ a complete basis set
estimate (CBS)*"* based on results for the augmented triple
(aug-cc-pVTZ) and augmented quadruple-& (aug-cc-pVQZ)
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Figure 1. Plot of the potential energy for O(*P) interacting with Hz™
as a function of the distance Rox between the O atom and the center
of mass of Hy*. The blue lines correspond to the CASPT2(6¢,60)/CBS
results for the three distinct orientations of the doubly occupied p orbital
of the O atom. The z axis is the internuclear OH axis, while the x axis
is the out-of-plane axis. The two red lines correspond to the
charge—quadrupole potentials for m; = 0 (solid) and m; = %1 (dotted).

correlation-consistent polarized-valence basis sets of Dunning.*#!

These ab initio interaction energies are expected to be highly
accurate. The quadrupole moment (0.91 au = 1.22 D A) for
the analytic potential (eq 3) is obtained from related CASPT2-
(4e,30)/aug-cc-pVQZ evaluations for the O atom. Calculations
with the (4e,30) active space are essentially identical to those
for the (6e,60) active space. Furthermore, calculations with
multireference configuration interaction or coupled cluster
methods such as QCISD(T) (quadratic configuration interaction
with singles, doubles, and perturbative treatment of connected
triples)** also yield very similar potential energy curves. All of
the ab initio electronic structure calculations reported here were
performed with the MOLPRO package.*

As predicted by eq 3, at long-range there are two repulsive
surfaces correlating with m; = £1 and one attractive surface
correlating with m; = 0. (Note that each of these three electronic
surfaces has a spin degeneracy of 3 to yield the total of 9
spin—orbit states). The long-range charge—quadrupole interac-
tion is essentially identical to the ab initio interactions down to
about 7 A. Then, as the separation decreases further, the analytic
charge—quadrupole and the ab initio surfaces are increasingly
divergent, with the ab initio potentials all being lower. Although
not shown in Figure 1, the next most important term in the
expansion involves the ion induced dipole term, which is
proportional to 1/R*. The polarizability of the O atom is 0.77
A3 =52 bohr®.** At short-range, the attractive surface correlates
with the doubly occupied O atom p orbital pointing toward the
H;' center-of-mass. The two excited state surfaces, which
correlate with the two other orientations for the doubly occupied
O atom p orbital, are weakly attractive near Rox = 3 A and
then become repulsive again at 2.2 A.

In the following analysis, we shall assume that the electronic
motions are adiabatic, with no dynamical transitions between
the different electronic states. This assumption seems appropriate
given the long-range nature of the relevant dynamics at low
temperature. With this electronically adiabatic assumption, the
two excited electronic states, with m; = %1, do not contribute
to the association rate coefficient because of their repulsive
nature at short range. Their long-range repulsive nature also
suggests that the opposite limit of rapid electronic crossings to
yield a statistical distribution of states would predict similar
rate coefficients.
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Figure 2. Plot of the calculated capture rate coefficient for Hy™ +
O(P) employing (i) the directly sampled CASPT2(4e,30)/CBS ab initio
potential (solid), (ii) the charge—quadrupole potential (Charge-Q;
dotted), (iii) the charge—induced-dipole potential (Charge-Ind. Dip.;
dashed), and (iv) the sum of the charge—quadrupole and charge—induced-
dipole potentials (Charge-Q + Charge-Ind. Dip.; dashed-dotted).

The isotropic nature of the long-range charge—atomic-
quadrupole interaction implies that the capture rate coefficient
for the ground electronic state is given by eq 55 of ref 27.%
This expression reduces to

k(T) — @(1/2)2l3r(1/3)‘u—1/2(Qq)2/3T—1/6

- _ (4)
= 8461 Qg T

In Figure 2, this analytic expression for the capture rate
coefficient is contrasted with that obtained from numerical
integration of the partition function employing direct CASPT2-
(4e,30)/CBS ab initio evaluations of the interaction energy for
the ground electronic state. A third calculation employed the
sum of the charge—quadrupole interaction and the charge—
induced-dipole interaction. Each of these calculations ignores
the effect of spin—orbit interactions. The CBS extrapolation is
obtained from the average of extrapolations for the cc-pVDZ,
cc-pVTZ and aug-cc-pVDZ, aug-cc-pVTZ basis set pairs.

The analytic charge—quadrupole and direct CASPT2 based
rate coefficients gradually approach one another as the temper-
ature is lowered. At 10 K, they differ by about 10%, whereas
at 400 K they differ by about 25%. Including the charge—induced-
dipole interaction, which is the next term in the long-range
expansion, greatly decreases the discrepancy, with the difference
at 400 K now being only 8%. Note that the rate coefficients for
the sum potential is not simply the sum of those for the
individual components but instead is determined by the dynam-
ics on the full potential. In general, the capture rate coefficient
for a sum of potential terms is lower than the simple sum of
the component rate coefficients.

These predictions of the rate coefficient for capture on the
electronic ground state must be corrected for the effect of the
electronic orbital and spin degeneracies. The three electronic
states for the charge—quadrupole interaction correlate with the
three choices for the spatial orientation of the doubly occupied
p orbital in the O atom. The triple spin degeneracy for each of
these orbital states then yields an overall degeneracy of nine.
However, the spin—orbit interaction splits these states to yield
the 3P,, *Py, and 3P, states at energies of 0, 159, and 227 cm™!
and with degeneracies of 5, 3, and 1, respectively.
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Figure 3. Schematic diagram of the strong and weak LS-coupling
limits for the charge—quadrupole interaction of eq 6.

The electronically adiabatic assumption now implies that two
components of the P, state, all three components of the *P;
state, and the singly degenerate P, state will be nonreactive.
Then, if we continue to ignore the effect of the spin—orbit
interaction on the charge—quadrupole interaction, the rate
coefficient in eq 4 should be corrected by the factor 3/Geectronics
where Gelectronic 18 the electronic partition function given by

=5 + 3 exp[—ECP))/k,T] + exp[—ECPy)/k,T]
(%)

Gelectronic

There are two limiting cases for the effect of the spin—orbit
interaction on the charge—quadrupole interaction. A schematic
diagram illustrating the two limiting cases of weak and strong
spin—orbit interactions is provided in Figure 3. When the
spin—orbit coupling is small relative to the charge—quadrupole
interaction, the role of the spin—orbit interaction is simply to
provide a degeneracy for the electronic states as outlined above.
This limit is appropriate at high temperatures where the
transition state lies at short separations with a relatively large
charge—quadrupole interaction.

When the spin—orbit interaction is not small relative to the
charge—quadrupole interaction, the ion—atom interaction energy
can be obtained via the diagonalization of the full electronic
Hamiltonian of the system, which includes both of these
interactions,

iﬁ — AS L. (6)

where B = 30Qq/(2R’I(2I—1)) defines the strength of the
charge—quadrupole interaction and A is the spin—orbit coupling
constant.

The second limiting case is that of large A (relative to B),
for which the diagonalization approximately yields for the three
lowest levels, (Appendix B)

Ey=—3 A
3 (7)
E1,2 = _g —A
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The complete set of nine levels is illustrated in Figure 3.
However, here, we are interested in only the three lowest levels
because the remaining six levels correlate with the upper two
triply degenerate ab initio surfaces. As illustrated in Figure 1,
these upper states are repulsive at short-range and so do not
contribute to the addition kinetics.

This large A limit is appropriate at low temperatures where
the transition state lies at large separation R, and B is thus small.
Furthermore, note that in the rate coefficient evaluations these
curves can be shifted up by A, which is independent of R and
is the large R limit of each of the Ey, E;, and E,. The potential
for the lowest level, Ej is then 1/2 as attractive as that in eq 3,
while that for the next lowest level is 1/4 as attractive and is
doubly degenerate. Thus, the overall rate coefficient in this limit
is equal to that from eq 4 times [(1/2)** 4+ 2(1/4)*?]/3 (= 0.474)
times the 3/gejecronic correction factor. That is, in the low
temperature limit, the effect of the coupling of the spin—orbit
and charge—quadrupole interactions is to decrease the rate
coefficient by about a factor of 2. When combined with the
3/qetectronic factor, the overall reduction of the rate coefficient
for capture in the low temperature limit is by a factor of 3.5.

As the temperature increases, the transition state moves to
closer separation and B increases and must ultimately become
larger than A. Thus, to treat a broad range of temperatures, one
must diagonalize the expression for the charge—atomic-quad-
rupole interaction energy (eq 6), which yields the following
expressions for Ey, E|, and E, (Appendix B)

2
NJEEA e B4
4 62
= 5 (8)
E, = _ B 2_B
12 A=

Now, the rate coefficient can be evaluated by employing these
two expressions for the potential (again after shifting by A) in
the long-range transition state theory formalism. The overall
rate coefficient is then given as

E,

k= (kO + 2k1)/qelectronic (9)

where ky and k; are the rate coefficients for reaction on the E
and E; potentials, respectively.

For large A, the expressions in eq 8 reduce to those in eq 7.
For small A, the expressions in eq 8 reduce to

2B 2A°
E() — ? R ———
5 (10)
2B A
E1,2 — ? —_

For A = 0, these potentials are degenerate and are equal to the
m; = 0 case of eq 2, thereby recovering the low A rate coefficient
of eq 4.

The calculated rate coefficient for capture is illustrated in
Figure 4 for the full diagonalization (intermediate A case) as
well as for the two limiting cases. These calculations consider
only the charge—quadrupole interaction. Interestingly, the
intermediate A case switches between the small and the large A
cases in precisely the temperature range of interest here. The
midpoint of the transition occurs at about 70 K, where the
thermal energy and the spin—orbit interaction are roughly
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Figure 4. Plot of the calculated capture rate coefficient for Hy™ +
OCP) with the full diagonalization (intermediate A case) and with the
two limiting cases of large or small spin—orbit interaction A.

equivalent. The change in the slope of the curves at about 80 K
is due to the increasing magnitude of the electronic partition
function for the O atom.

The intermediate A case, charge—quadrupole capture rate
coefficient prediction should still be corrected for the effects of
the higher order terms in the potential as illustrated in Figure
2. As noted above, the predominant correction term involves
the charge—induced-dipole interaction. The proper treatment of
these corrections would involve the diagonalization of the inter-
actions in the full spin—orbit space, as was done for the
charge—quadrupole interaction. However, in this case, the
predominant components are independent of spin—orbit state,
and so we choose to ignore the spin—orbit induced corrections.
Notably, the treatment of Gentry and Giese considers the effect
of the anisotropy in the polarizabity.?? Their results suggest that
our neglect of the anisotropy in the charge—induded-dipole
interaction will introduce errors of no more than a few percent.
The final calculation thus involves the calculation of the capture
rate coefficients ky” and k;” for the potentials

Ey = Ecasproyces T Eo + 2B/3 (11
E| = Ecasprycs + E, + 2B/3

where E, and E; are from eq 8. The final rate coefficient is
given by the analogue of eq 9.

The rate coefficients for capture on these potentials were
evaluated with both long-range TST and trajectory simulations.
The trajectory predictions were identical to the TST predictions,
demonstrating that there is no recrossing of the TS surfaces for
this reaction because of the isotropic nature of the potential.

CO + H;" Reaction. The CO molecule has a small nonzero
dipole moment, d, of 0.043 au (0.110 D),* with the C atom
slightly negative and the O atom slightly positive. Thus, the
charge—dipole interaction

Vi = _4q cos 0 (12)
R

is the longest ranged term for the interaction of CO with Hs*.
However, in the transition state region for the temperatures of
interest here (i.e., for separations on the order of 20 au), the
charge—quadrupole

Klippenstein et al.

c

Vo= Q—‘é(s cos’6 — 1) (13)
4R

and charge—induced-dipole interactions

2 2 .
g (o, cos” 0 + a, sin” 0)
Vcid =~ 4 (14)
2R

are of comparable magnitude to the charge—dipole interaction
because of the much larger values for the CO quadrupole
moment (Q = —2.92 au = —3.92 D A)* and polarizability
components (o = 15.7 au = 2.32 Aland o = 12.1 au = 1.79
As).zw

These three terms in the potential are illustrated in Figure 5
for the linear approach of Hs;™ to the C atom in CO. The
dominance of the charge—dipole term at large R implies that it
is the dominant factor in determining the rate coefficient for
capture in the low temperature limit. But the crossover between
the charge—quadrupole and the charge—dipole interactions
occurs at the large separation of 15 A. Thus, the charge—
quadrupole interaction becomes important already at rather low
temperature. Although the charge—induced-dipole interaction
is quite small here, this interaction is still of importance to the
capture kinetics because it is attractive for all orientations,
whereas the charge—dipole and charge—quadrupole interactions
are both repulsive for some orientations.

The orientation dependence of the sum potential, V., + Vo
+ Vs, 18 illustrated in Figure 6, with plots for addition to the
C side (6 = 0), to the O side (6 = 180°), and perpendicular to
CO (6 = 90°). Notably, the charge—quadrupole term is the same
for addition to either the C side or the O side of CO, while the
charge—induced-dipole term has only a weak orientation
dependence. Thus, at least at long-range, the difference in
binding to the two sides arises primarily from the charge—dipole
term. Correspondingly, the charge—dipole interaction plays a
key role in determining the branching between H;*...CO and
H;"...0C in the addition process. Meanwhile, for the perpen-
dicular attack the long-range interaction is repulsive because
the charge—quadrupole term is repulsive, while the charge—dipole
term is zero.

The small magnitude of the dipole moment creates some
difficulty for ab initio based evaluations of the interaction
energy. For example, at the MP2 (second order Moller—Plesset
perturbation theory) level, the dipole moment is predicted to
be 0.097 au for the CBS limit or about 2.3 times too large. The
QCISD(T) approach provides a much more accurate prediction
for this dipole moment. Indeed, a CBS extrapolation of the
predicted CO dipole moment based on explicit cc-pVDZ and
cc-pVTZ calculations (at the aug-cc-pVQZ geometry) yields a
CO dipole moment of 0.052 au, or only 20% larger than the
experimental value for the ground rovibrational state (and only
10% larger than the experimental value of 0.048 au for the
equilibrium geometry®). This QCISD(T)/CBS approach pro-
vides a similarly accurate prediction for the quadrupole moment
of —2.90 au.

We have used this QCISD(T)/CBS approach to test the
importance of additional terms in the potential beyond the three
long-range terms of eqs 12—14. The plot in Figure 6 demon-
strates that the three term long-range expansion is accurate down
to separations of 7—8 A (at 7 A the discrepancy is only 20%).*
The calculated capture rate coefficients for the three individual
terms in the potential, for the sum potential, and for a directly
evaluated QCISD(T)/CBS potential are illustrated in Figure 7.
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Figure 5. Plot of the potential energy for the linear addition of H;" to
the C side of CO. The dotted, dashed, and dash-dot lines denote the
charge—dipole, charge—quadrupole, and charge—induced-dipole in-
teractions, respectively. The solid line denotes the sum of these three
interactions.
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Figure 6. Plot of the interaction energy for the addition of H;* to CO
at angles of O (linear addition to the C side of CO), 90° (addition
perpendicular to the CO axis through the CO center-of-mass), and 180°
(linear addition to the O side of CO). The blue lines denote the long-
range expansion given as the sum of the charge—dipole, charge—
quadrupole, and charge—induced-dipole interactions. The red lines
denote QCISD(T)/CBS calculations.

The rate coefficients for capture calculated for the QCISD(T)/
CBS and three term long-range potential are essentially identical
over the 10 to 400 K temperature range, with only a minor
difference of 5% arising at the highest temperatures. This slight
increase toward higher temperature is indicative of contributions
from additional terms in the potential.

Near 10 K, the capture rate coefficients are of similar
magnitude for all three terms in the potential. The charge—dipole
and charge—quadrupole rate coefficients are proportional to 7~
and T8, respectively, whereas the charge—induced-dipole
capture is temperature independent. Thus, as the temperature
rises, they both become small relative to the charge—induced-
dipole rate coefficient. For the charge—quadrupole term, this
decrease is quite gradual. As a result, the overall capture is not
well-described by any single term for the full range of
temperatures of interest here.

The long-range transition state theory approach employed in
the preceding analysis typically overestimates the rate coefficient
for capture by 5—10%. This minor overestimate is corrected
for here via trajectory simulations employing the three term
long-range expansion. The good agreement between the TST
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Figure 7. Temperature dependence of the calculated capture rate
coefficient for CO + H;" with the charge—dipole (dashed), charge—
induced-dipole (dotted), charge—quadrupole (dashed-dotted), charge—
dipole + charge—induced-dipole + charge—quadrupole (dash-dot-dot-
dot), and the QCISD(T)/CBS ab initio potential (solid).

calculations of the capture rate coefficient for this potential and
for the QCISD(T)/CBS potential implies that such long-range
potential based trajectory simulations should be accurate. These
simulations predict a dynamical correction factor of 0.90 £ 0.02
independent of temperature over the 10 to 400 K range. Our
final predictions presented below include this dynamical cor-
rection factor.

The long-range interactions considered here are independent
of the orientation of the H;™ ion. Correspondingly, the orien-
tational average over the Hi;' rotational degrees of freedom
should have no effect on the predicted rate coefficient for
capture. Importantly, this also suggests that the quantized nature
of the H;" rotational states, such as the separation into ortho
and para states, should have little effect on the predicted rate
coefficient for capture. Instead, quantum effects should only be
significant at temperatures where they are important for the CO
rotational partition function, which is about 5 K and lower.

The potential energy surface for the reaction of CO with H;"
was studied by Herbst and Woon?* with high level CCSD(T)/
aug-cc-pVTZ (coupled cluster with singles, doubles, and per-
turbative treatment of connected triples)* calculations. LeRoy
and co-workers have recently obtained similar results (within
1 kcal/mol for the key stationary points) with larger basis sets
and including core—valence correlation but employing the
CCSD rather than CCSD(T) method in the geometry optimiza-
tions.”> The addition leads to two distinct intermediate com-
plexes, with the chemical bonding to either the O or the C end
of the CO. These two intermediates lead to separate sets of
bimolecular products, H, + HCO' and H, + HOC'. A
schematic diagram illustrating the reaction pathways for these
reactions is provided in Figure 8. The rovibrational properties
of the stationary points in this diagram were obtained at the
QCISD(T)/aug-cc-pVTZ level. Higher level estimates for the
energies were obtained from basis set extrapolations of QCIS-
D(T) calculations with aug-cc-pVTZ and aug-cc-pVQZ basis
sets. These energies are essentially identical to those of Herbst
and Woon whose focus was instead on the kinetics of the H, +
HOC™ reaction.

These rovibrational properties were incorporated in transition
state theory based master equation simulations of the rate
coefficients for the two product channels. This analysis includes
a treatment of the initial branching between the two addition
complexes, the isomerization between the two complexes, and



284 J. Phys. Chem. A, Vol. 114, No. 1, 2010

CO+H
00— S H, +HOC'
] S
Vo TSel 18N /30
= 10 | IS \ /
- \
g \ J T~ \40,
= ]
g \ ! H_..HOC"
=< 20 \ !
> \ I
9 \ 1
2 ! ]
w  -30 \ I
[ \ 1
= \ 1
© \ 1 +
T .40 \asa! H, +HCO
e etatniiai -40.5
H_..HCO
-50

Figure 8. Schematic diagram of the stationary points on the potential
energy surface for CO reacting with H;". Energies are in kcal/mol
relative to CO + H;" and include zero-point corrections. They are
obtained from QCISD(T)/CBS//QCISD(T)/aug-cc-pVTZ calculations.

the dissociation of these complexes on to products and back to
reactants. The rate constant for isomerization between the two
complexes is obtained from rigid-rotor harmonic oscillator
transition state theory and includes asymmetric Eckart tunneling
corrections. The rate coefficients for decomposition to the two
products are treated with long-range transition state theory.
These transition state theory based evaluations were performed
at the total energy, E, and total angular momentum, J, resolved
level. We consider only the collisionless limit in this analysis
because of our focus on interstellar chemistry, where the pres-
sures are very low.

The branching in the initial addition was determined from
both TST and trajectory simulations, with both approaches
employing the three term long-range expansion of the potential.
The perpendicular orientation of the CO moiety with respect to
the center-of-mass to center-of-mass axis is predominantly
repulsive. The assumption of an infinite barrier for this orienta-
tion then allows for separate TST estimates of the channel
specific addition rate coefficients. Alternatively, the trajectory
approach described in ref 34 provides the reactive flux for
transitions between any pair of the three species H,...HCO™,
H,...HOC, and CO + H;". Again, the perpendicular orientation
of the CO is used to define a plane separating the H,..HCO™
and H,...HOC" complexes.

These two predictions for the branching in the initial addition
to the two complexes are illustrated in Figure 9. The two
predictions are fairly similar but with the trajectory simulations
yielding a few percent less H,..HOC™. At long-range, the
charge—dipole term leads to a strong preference for the
H,...HCO™ channel. This preference decreases with decreasing
separation as the charge—quadrupole and charge—induced-
dipole terms become more important. However, some memory
of this preference as the reactants come together would yield a
modest increase in the H,..HCO" branching over the TST
predictions as observed in Figure 9. The final master equation
simulations employ the trajectory based estimates for this
branching.

Results and Discussion

OCP) + H;" Reaction. The present transition state theory
based prediction for the temperature dependent capture rate
coefficient for O(P) + Hj" is illustrated in Figure 10. The
predicted room temperature rate coefficient of 1.1 x 107~° cm?
molecule™ s7! is in good agreement with the recent measure-
ment of Milligan and McEwan" ((1.2 & 0.5) x 107? cm?
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Figure 9. Dependence of the branching fraction to HOC*™ + H, on
temperature from trajectory simulations (solid) and from TST simula-
tions (dotted).

2x10°

1x10° | el
9x107° -

8x107°
7x107° SO Corr TST
6x1071° o Fehsenfeld

10 e McEwan
5x10°° | [e---- Collins

4x1071°

k (cm3 molecule™ s")

3x10° .

10 100
Temperature (K)
Figure 10. Plot of the rate coefficient for OCP) + H3™ as a function
of temperature. The solid line denotes the present calculations based
on the spin—orbit corrected CASPT2/CBS potentials (eq 11). The

symbols denote the experiments from refs 18 and 19. The dotted line
denotes the trajectory results from ref 21.

molecule™ s7!) and within the error bars of the earlier
measurement of Fehsenfeld'® ((0.8 £+ 0.4) x 10™° cm?® mol-
ecule™! s7!). The predicted rate coefficient is well-reproduced
by the expression 1.14 x 1072 (7/300)~%1% exp(—1.41/T) cm?
molecule™ s7! over the 5 to 400 K temperature range.

For most ion—molecule reactions, at least near room tem-
perature, the rate coefficient for capture is largely determined
by the charge—induced-dipole interaction. However, for this
reaction, the capture rate coefficient is instead largely determined
by the charge—quadrupole interaction for the full 5 to 400 K
temperature range of interest here. This difference in behavior
is due to the fact that for an atomic reactant the charge —quadrupole
interaction is isotropic, whereas for a molecular reactant, the
interaction is highly anisotropic with similar magnitude attrac-
tions and repulsions.

The rate coefficient is predicted to increase by a factor of
1.4 for a decrease in temperature from 300 to 30 K. This
predicted rise with decreasing temperature is due to the fact
that (i) the classical charge—quadrupole capture rate coefficient
has a T~ temperature dependence and (ii) the electronic
partition function for OC’P) decreases with decreasing temper-
ature. The transition from the small A case to the large A case
has the opposite effect of a decrease with decreasing T but is
outweighed by the first two factors. The net result is that the
predicted rate coefficient at 30 K of 1.5 x 107 cm® molecule™!
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s”! is now comparable to the value of 1.7 x 107° cm’
molecule™" s™! that has been commonly employed for the CO
+ H;" reaction.

In making these predictions, we have assumed that the
spin—orbit levels of O(’P) are thermalized. As discussed by
Goicoechea et al.,” in dense cloud conditions, this is not really
the case for densities below the critical densities of the fine
structure transition, (e.g., 5 x 10° cm™ for *P,—°P,), and the
fine structure excitation is a “complex non-local thermal
equilibrium problem”. But, for the low temperatures of the
clouds considered here, the assumption of local thermal equi-
librium is probably not too far off. Also, under the electronically
adiabatic assumption, the 3P, and 3P, states are nonreactive, and
so modest deviations in their populations from thermal equi-
librium should not have a major effect on the predicted rate
coefficients. The present calculations also yield rate coefficients
for specific O(’P) states. The adiabatic assumption implies that
those for the °P, and 3P, states are zero, while that for the *P,
state may be obtained from the thermal rate coefficient via
multiplication by 1/5 of the temperature dependent electronic
partition function for OCP) (i.e., (5 + 3 exp(—ECP)/kgT) +
exp(—ECPo)ksT))/5).

The reaction of O(*P) with Hs;™ has also been the subject of
a detailed theoretical study by Collins and co-workers.*! Their
analysis was based on the propagation of classical trajectories
on a potential obtained from fits to a set of MP2/6-311+G(2d,p)
calculations. These authors consider the effect of the spin—orbit
interaction on the electronic partition function of the O atom
but do not consider its coupling to the charge—quadrupole
interaction. Thus, their results, which are illustrated in Figure
10, roughly correspond to the present small A results plotted in
Figure 4. Minor differences in the ab initio methods used and
in the potential energy surface fitting contribute to the modest
differences from our small A results. The present basis set
extrapolation procedure and analytic long-range potential expan-
sions are both expected to yield more accurate interaction
energies. We would expect the present predictions to be accurate
to about 10 to 20% over the 10 to 300 K temperature range.

Notably, as demonstrated in ref 21, the products H, + OH™
and H + H,O™ are both highly exothermic. Furthermore, the
H, + OH* channel leads barrierlessly to the OHs™ complex.
Thus, the overall reaction rate coefficient for the O(°P) + H;"
reaction is expected to be simply the capture rate coefficient
that was calculated here. The study of ref 21 provides a useful
indication of the branching ratio between the two exothermic
channels.

CO + H;™ Reaction. The present transition state theory based
rate coefficients for the reaction of CO with H;" are illustrated
in Figure 11. Over the 10 to 400 K temperature range, the
predicted rate coefficient for the formation of H, + HCO™ is
well-reproduced by the modified Arrhenius expression 1.36 x
1079 (77300)"%'42 exp(3.41/T) cm?® molecule™' s™!, while that
for the formation of H, + HOC" is well-reproduced by the
expression 8.49 x 10710 (77300)%%%6! exp(—5.21/T) cm?® mol-
ecule™! s7!. Over this temperature range, the charge—dipole,
the charge—quadrupole, and the charge—induced-dipole interac-
tions are each important factors in the rate coefficient for capture.
At low temperatures, the charge—dipole interaction is the most
important, while at high temperatures the charge—induced-dipole
interaction is the dominant factor. The charge—quadrupole
interaction is significant throughout the 10 to 400 K range.

The dominant products are predicted to be H, + HCO™. The
initial addition rate coefficients are the sole determining factor
in the branching ratio because the decomposition of H,... HOC™
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Figure 11. Plot of the rate coefficient for CO + H;™ as a function of
temperature. The dash, dot, and solid lines denote the present theoretical
predictions for formation of H, + HCO™, H, + HOC™, and the total
products, respectively. The symbols denote the experimental results
from refs 15 and 51—57.

into H, + HOC™ is much more rapid than the isomerization to
H,...HCO™. This statement remains true even for changes of as
much as £1 kcal/mol in either the isomerization barrier or the
H, + HOC" exothermicity. Such changes are at the limit of
the uncertainties in these energies.

The branching to H, + HOC™ decreases with decreasing
temperature because the charge—dipole interaction is attractive
for the approach of the C end of CO and repulsive for the O
end. In the low temperature limit, the charge—dipole interaction
is the dominant term in the potential. As the temperature rises,
the charge—induced-dipole and charge—quadrupole terms both
become larger in the transition state region than the charge—dipole
interaction, and the two products are formed with similar rate
coefficients.

Also plotted in Figure 11 are the various experimental
measurements of the overall rate coefficient.'>>' 5" The theoreti-
cal prediction is in reasonable agreement with the room
temperature experimental measurements, being at the upper end
of the error bars for most of the more precise measurements.
However, it is hard to understand the discrepancy with the one
low temperature measurement of Rowe and co-workers.’” With
this discrepancy, a review of the factors causing the predicted
temperature dependence and the uncertainties in the predictions
seems warranted.

First, we note that the increase in the predicted rate coefficient
with decreasing temperature is due to the increasing contribu-
tions of the charge—quadrupole and charge—dipole interactions,
which have temperature dependences of 7~ and T7'72,
respectively. For this reason, it is important to use accurate
electrostatic moments in the analysis. For example, if we had
used the MP2/CBS dipole moment in place of the experimental
dipole moment, then our predictions for the total rate coefficient
would have been a factor of 1.3 larger at 30 K. Meanwhile, at
this same temperature, the channel specific rate coefficient to
form H, + HCO™ would have been a factor of 1.4 larger, and
that to form H, + HOC™ would have been a factor of 3 lower.
Clearly, the predicted branching ratio is extraordinarily sensitive
to the dipole moment. Our use of the experimental moments
and the good agreement between the direct QCISD(T)/CBS and
three term analytic expansion implies that our underlying
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potential is of high accuracy. Furthermore, the classical trajec-
tory approach generally provides accurate capture rate coef-
ficients down to quite low temperature. In this case, the classical
capture rate coefficient should be accurate down to, at least,
the rotational temperature of CO (hcB/kg = 2.8 K) because the
long-range interactions are independent of the Hy* orientation.

It is interesting to note that the channel specific rate coefficient
for the production of H, + HCO™ is in better agreement with
the low temperature results than is the total rate coefficient. Thus,
an error in the treatment of the decomposition of the H,...HOC™*
adduct to H, + HOC* could remove the discrepancy. For
example, an error in the predicted exothermicity for this channel
could decrease the effective rate coefficient for its formation.
However, as noted above, a reduction in this exothermicity by
its maximum estimated uncertainty of 1 kcal/mol has a
negligible effect on the predicted rate coefficients for CO +
H; ™. Furthermore, comparisons of theory and experiment (with
either the present methods or as described in prior studies>*2%%)
for the H, + HOC™ rate coefficient suggest that the isomeriza-
tion barrier should be lowered by about 1 kcal/mol. This
lowering has essentially no effect on either the rate coefficient
or branching fraction for the reaction of CO with Hj™.
Nevertheless, it should be noted that it is difficult to obtain
quantitative agreement with the experimental data for the H, +
HOCT" rate coefficient with reasonable adjustments in the
potential energy surface, especially for the high temperature data
of ref 26. This difficulty may suggest that there are important
quantum and/or dynamical effects that are mistreated in the
present master equation based treatment.

In the absence of some important unforeseen effect, we expect
the present theoretical predictions to be accurate to about
10—20%.

Astronomical Implications. In dense interstellar clouds, Hs"
is produced by cosmic rays at a rate of ¢n(H,), where ¢ is the
cosmic-ray ionization rate (typically adopted to be ~3 x 1077
s~ and n(H,) is the number density of molecular hydrogen
(typically of order 10*—10° cm™3). If, as in McCall et al.,'
proton transfer to CO is considered to be the dominant
destruction mechanism, H;* will be destroyed at a rate of
kcon(H3H)n(CO). In steady state, these rates can be equated and
solved for the Hy* number density to yield n(H;") = ({n(Hy))/
(kcon(CO)). Since column densities rather than number densities
are the observable quantities, it is more convenient to transform
this expression by using the relationship N(Hs™) ~ n(H;%)-L,
where N(H;") is the observed column density of H;* in a
particular cloud and L is the absorption path length through that
cloud. This relationship is a very good approximation because
n(H;™) does not directly depend on cloud density but only on
¢ and the H,/CO ratio. The former is assumed to be constant
because of the long penetration depth of ~100 MeV cosmic
rays, and the latter is constant because essentially all hydrogen
is in the form H, and essentially all carbon is in the form CO.
With this substitution, we can express the product of the
unknown quantities £ and L in terms of known quantities:

EL = N(H,; ")+ [keon(CO)]/n(H,) (15)

The quantity in square brackets represents the destruction rate
for an individual H;* molecule in a dense cloud, and in light of
the present results, this should be modified to include the effect
of O atoms. A more complete expression would be [kcon(CO)
+ kon(O)], but this can be somewhat simplified. The cosmic
abundance of oxygen is roughly twice that of carbon, and
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Figure 12. Plot of the temperature dependence of the predicted increase
in the destruction rate of Hs", (kco + ko)lkco, compared with the
analysis of McCall et al.'?

essentially every carbon atom soaks up an equivalent of oxygen
in producing CO. Assuming that all of the remaining oxygen
atoms are not chemically bound, it is a good approximation to
say that n(O) ~ n(CO). Consequently, we can express the Hy*
destruction rate as ~[kco + ko]n(CO). If we denote the “old”
value of kco (1.7 x 107° cm?® molecule™ s7') as k¢, then the
destruction rate of H3" should be increased, compared with the
analysis of McCall et al.,'> by a factor of (kco + ko)/kco'. This
quantity is plotted as a function of temperature in Figure 12,
and at the temperatures typical of dense clouds (10—30 K), it
is 2.5 to 3.0.

As evident from eq 15, this increased destruction rate
translates directly to an increase in either the cosmic-ray
ionization rate & or the cloud path length L. Future observations
and analyses to better constrain the cloud density (and thereby
the path length) in sightlines where H;* has been observed
would therefore be highly desirable, as they could break this
degeneracy between § and L.

In addition to the direct impact on H;", the higher rate
coefficient for the H;* + O reaction also suggests that interstellar
water will be produced more quickly than previously thought.
This reaction produces either OH™ or H,O™, both of which can
undergo hydrogen abstraction reactions with abundant H, to
form H3;O™. The latter ion can dissociatively recombine with
electrons to form either H,O or OH; the branching ratio for
this recombination has been somewhat controversial, with
storage ring measurements’>® indicating a modest (~25%)
branching fraction to H,O but flowing afterglow studies®!
suggesting a much lower (~5%) branching fraction. Regardless
of the correct branching ratio, increasing the rate of the Hs™ +
O reaction will speed up the production of interstellar water.
The abundance of interstellar water is a matter of great interest
in terms of both astrochemistry and astrobiology and is the
subject of a Key Programme of the recently launched Herschel
Space Observatory.

Finally, we wish to emphasize the surprising result that the
H;™ + CO reaction forms an appreciable fraction of HOC™, as
indicated in Figure 11. The branching fraction to HOC™ has
traditionally been assumed to be 6 £+ 5%, on the basis of
collision induced dissociation experiments.®> However, as
emphasized by DeFrees et al.,”® these experiments are complex
and somewhat indirect. The relatively low observed HCO™/
HOC ratios of ~360—6000 observed in molecular clouds®
have been somewhat difficult to reconcile with the high rate
coefficient (~4 x 107'° cm® molecule™' s™') for the isomer-
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ization reaction HOC™ + H, — HCO™ + H, observed in a cold
ion trap.%* Perhaps the higher branching fraction of HOC™
formation indicated in the present calculations can help resolve
this discrepancy.

The arguments presented here regarding the impact of the
newly calculated reaction rates are based on a very simplistic
analysis, assuming steady state and considering only a limited
number of reactions. To fully explore the ramifications of these
results on astrochemistry, it will be necessary to perform more
detailed, time-dependent calculations using a full chemical
network. In certain cases, dependencies in such complex
networks can reduce the effects on molecular abundances that
result from changing individual rate coefficients. Preliminary
results from such chemical models indicate that in this case,
our simple arguments are at least qualitatively correct.

Conclusion

The present theoretical analysis predicts that for both the
OCP) + H;" and the CO + H;" reactions the rate coefficient
increases significantly with decreasing temperature. As a result,
the destruction rate for H;" in dense clouds is predicted to be
2.5 to 3 times greater than assumed in the model of McCall et
al.'"> For the OC’P) reaction, there are no experimental studies
of the temperature dependence. For the CO reaction experiment
suggests that the rate coefficient should be independent of
temperature.>> Given the importance of the predicted revision
to the destruction rate, additional low temperature studies of
these reactions are needed to confirm the predicted temperature
dependence for the O(’P) reaction and/or to help resolve the
discrepancy between theory and experiment for the CO reaction.

Appendix A

Quadrupole Moment of an Atom. In this appendix, we
discuss the quadrupole moment Q for an atom with an open p
shell. We start with a review of the general description for the
quadrupole moment tensor. We then provide some simple
qualitative results that show the effect of symmetry on the
quadrupole moment for an atom.

The operator for the interaction of a quadrupole with an
electric field is given by®°

1 3¢
1@ = 6o 2 (AD

where @ is the electric field potential and Qj is the operator for
the quadrupole moment of the system.

The quadrupole moment operator is a symmetric tensor of
the second rank with zero trace. Because of its transformational
properties, the most general form for such a tensor, Q,»k, averaged
over all degrees of freedom except the direction of the angular
momentum is®’

A 30 PN 54 2
Oy = 2027 — 1) Sl + I, 3J(J + Doy
(A2)

The normalization factor in eq A2 is chosen so that the constant
Q, which uniquely defines the quadrupole moment operator,
corresponds to the value of its z component, (.., in the IM, =
J) rotational state. This constant is commonly referred to as the
quadrupole moment for an atom.
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TABLE A1l: Orbital Wave Functions and Quadrupole
Moments, Q, for 1, 2, and 3 Electron p Shell Cases

quadrupole
shell  configuration wave function moment

p! ’p I1) 0
p’ p (1/2)Y2(11)10) — 10)11)) -0i

D Iy 20,
P’ ’p 172(11)10)10) — 10)I1)I0) 0

— II=IT) + 1=1)IT))
D (172)"2(1)I1)0) — 11)I0)I1)) 0

Note that substituting in eq 1 the potential of a point charge
for an ion and expression (eq A2) for Q,-k in terms of the orbital
angular momentum, ﬁ,-, yields eq 2.

Standard electronic structure software packages provide
routine procedures for evaluating the quadrupole moment Q in
eq A2. Such procedures include the multireference nature of
the wave function and as a result, although numerically accurate,
are fairly complicated. It is instructive to consider the simpler
derivation of expressions for Q for atoms with an open p shell
within the Hartree—Fock approximation. These expressions
demonstrate the effect of the symmetry of the atomic wave
function on its quadrupole moment. While these expressions
may not be very accurate due to the multireference nature of
the wave function, they do provide order of magnitude estimates
for the quadrupole moment. More importantly, in most cases,
they provide the right sign of the quadrupole moment, which is
crucial for the qualitative understanding of the structure of the
energy levels. Note, however, that the actual calculations
presented in the text employ the accurate expressions obtained
from high-level electronic structure evaluations rather than these
simple Hartree—Fock estimates.

Within the Hartree—Fock approximation, the quadrupole
moment, Q;, for a single p electron in an atom is given by

0,=(1Q_I1) = (=110 _I-1) = %Iel(rz) (A3)

(010..10) = —20, (A4)

where (%) is the average distance squared of the electron from
the nucleus and the one-electron wave function in the state with
the M, orbital angular momentum projection is denoted as 1M, ).

The corresponding quadrupole moments for the cases of 2
and 3 electrons (p?> and p’) are given in Table Al. The
quadrupole moments for the cases of 4 and 5 electrons can be
reduced to those for the p? and p' cases by viewing them as
having 2 and 1 holes, respectively, with the quadrupole moment
reversing its sign for the corresponding configurations. The
results in the table show the orbital part of the wave function
and the corresponding quadrupole moment (we do not consider
S configurations, for which the quadrupole moment is, obvi-
ously, zero). Our results coincide with those of Gentry and
Giese.”

Appendix B

Charge—Quadrupole Interaction with Spin—Orbit Cou-
pling. In this appendix, we derive the expression for the
electronic energy in the presence of the charge—quadrupole and
spin—orbit interactions, eq 6. To find the eigenvalues of the
Hamiltonian (6) one notes that, because of cylindrical symmetry,
the z component of the total electronic angular momentum is
conserved. Thus, the nine-dimensional (3 x 3) phase space of
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the system is separated into the M, = O three-dimensional
subspace (J/ = 0, 1, 2) and two doubly degenerate M, = +1
two-dimensional (J/ = 1,2) and My = £2 one-dimensional (J =
2) subspaces. Further simplification arises from the observation
that the Hamiltonian (6) is also invariant under rotation about
the x axis by 180°. As a result, the M; = 0 three-dimensional
subspace is naturally subdivided into the two-dimensional (J
= 0, 2) subspace, whose elements are invariant under this
rotation and the one-dimensional J = 1 subspace whose vectors
change sign under it.

To calculate the matrix elements of the Hamiltonian (6), we
will use the eigenstates of the total electronic angular momentum
and its z component as a basis, in which the spin—orbit coupling
operator is diagonal. To calculate the matrix elements of the
quadrupole term in the Hamiltonian (6), we will explicitly
express the eigenstates of the total electronic angular momentum
in terms of the IM;, My) states.

M; = 0, J = 0,2 Subspace. The eigenstates of the total
electronic angular momentum are given by

IJ =0,M,=0)=1/3(10,0) — I1,—1) — I—1,1))
(B1)

and

IJ =2,M,=0) = 1/6(210,0) + 11, —1) + I—1, 1))
(B2)

which can be checked directly by application of the ascending
and descending ladder operators J; and J_ to them. Using these
equations, one obtains the following expressions for the matrix
elements of the I:f operator, (we omit the M; = 0 index for
simplicity of notation)

2 _ ~D _ ~D —
OIL210) = 2/3,2IL212) = 1/3,{0IL212) = —V2/3
(B3)

and the Hamiltonian matrix in this subspace is given by

(B4)

2A —B\2/3
—-B\2/3 —A —B/3

The diagonal elements of this matrix provide the (ap-
proximate) energies in the corresponding J states (2A for the I/
= () state and —A—B/3 for the |J = 2) state) in the strong
spin—orbit coupling limit (low temperatures, large interfragment
separations). The eigenvalues of this Hamiltonian are given by

_ _ 9.2, AB liz
Ej,= AR = Bl6 £ o[ 24"+ 55 + 5

(B5)
The first eigenstate (with the plus sign in front of the square
root term in this equation) correlates with one of six degenerate
repulsive states at small separations, where the charge—quadrupole
interaction dominates, eq 3. At large separations, when spin—orbit
coupling is the dominant interaction, it correlates with the |/
= 0) spin—orbit state. The second eigenstate correlates with
one of the triply degenerate attractive states at small separations,
eq 3, and with one of the quintuply degenerate IJ = 2)
spin—orbit states at large separations.
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TABLE A2: Energy Levels in the Strong Spin—Orbit
Coupling Limit

J ELS Mj EqQ
2 —A 2 B/3
1 —B/6
0 —B/3
1 A 1 —B/6
0 B/3
0 2A 0 0

TABLE A3: J Dependence of Effective Quadrupole Moment
for the Strong Spin—Orbit Coupling Case

J |J,MJ = J) QJ
2 I1,1) 0
1 (1/2)2(11,0) — 10,1)) —072

M; =0, J= 1 Subspace. The eigenstate of the total electronic
angular momentum is given by

lJ = l,M,=O)=\/m(I1,—1) —1=1,1)) (B6)
the matrix element of 12 is given by
LAy =1 (B7)
and the energy of this state is given by
E=A+B/3 (B8)

At small separations, it correlates with one of the six degenerate
repulsive states, eq 3. At large separations, this state correlates
with one of the triply degenerate I/ = 1) spin—orbit states.

M; = 1, J = 1, 2 Subspace. The eigenstates of the total
electronic angular momentum are given by

IJ=1,M,=1)="1/2(11,0) — 10,1))  (B9)
and
IJ=2,M,=1)=1/2(11,0) + 10,1))  (B10)
Then the matrix elements of [ are given by

(UEAITY = 172, QILA2) = 1/2,¢1IE212) = 172

(B11)
and the Hamiltonian matrix is given by
A — B/6 B/2

( B/2 —A— B/6) (B12)

The diagonal elements of this matrix provide the (ap-
proximate) energies for the corresponding J states (A — B/6
for the IJ = 1) state and —A—B/6 for the I/ = 2) state) in the
strong spin—orbit coupling limit (low temperature, large separa-
tion). The eigenvalues of this Hamiltonian are given by
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E,, = —Bl6 + VA’ + B'/4 (B13)

The first eigenstate (with the plus sign in front of the square
root term in this equation) correlates with one of the six
degenerate repulsive states at small separations, eq 3, when the
charge—quadrupole interaction dominates. At large separations,
when spin—orbit coupling is a dominant interaction, it correlates
with one of the triply degenerate I/ = 1) spin—orbit states. The
second eigenstate correlates with one of the three degenerate
attractive states at small separations, eq 3. At large separations,
it correlates with one of the quintuply degenerate |J=2)
spin—orbit states.

M, =2, J =2 Subspace. The eigenstate of the total electronic
angular momentum is given by

J=2,M,=2)=11,1) (B14)
the matrix element of £ is given by
(LAY =1 (B15)
and the energy of this state is given by

E=—A + B/3. (B16)

At small separations, it correlates with one of the six
degenerate repulsive states, eq 3. At large separations, this state
correlates with one of the quintuply degenerate IJ = 2)
spin—orbit states.

In the strong spin—orbit coupling limit (large interfragment
separation), the preceding results for the (approximate)
energies are summarized in Table A2. These expressions can
be obtained more easily by noting that in the strong
spin—orbit coupling limit the total electronic angular mo-
mentum J is a good quantum number. In this case, the
operator for the quadrupole tensor is expressed by eq A2
with the operator for the total electronic angular momentum,
J:, used instead of the orbital one.%® The effective quadrupole
moment Q; then depends on the value of J. Its values are
presented in Table A3 together with the corresponding wave
function IJ,M; = J) in the IM; Ms) representation for each
J.
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