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ABSTRACT: The fundamental molecular ion H3
+ has

impacted astronomy, chemistry, and physics, particularly
since the discovery of its rovibrational spectrum. Consisting
of three identical fermions, its properties are profoundly
influenced by the requirements of exchange symmetry, most
notably the nonexistence of its ground rotational state. Spec-
troscopy of H3

+ is often used to infer the relative abundances
of its two nuclear spin modifications, ortho- and para-H3

+,
which are important in areas as diverse as electron dissociative
recombination and deuterium fractionation in cold interstellar
clouds. In this paper, we explore in detail the impact of exchange symmetry on the states of H3

+, with a particular focus on the
state degeneracies necessary for converting spectral transition intensities to relative abundances. We address points of confusion
in the literature surrounding these issues and discuss the implications for proton-transfer reactions of H3

+ at low temperatures.

1. INTRODUCTION

The high-resolution spectrum of H3
+, first observed by Oka in

1980,1 has served as a useful tool for probing fundamental
chemical physics. As the simplest polyatomic molecule, H3

+ serves
as a useful benchmark for quantum chemistry, and its extensive
laboratory spectroscopy2 (especially above the barrier to
linearity3−7) has helped spur advances in ab initio methods8−11

that now calculate H3
+ energy levels to within ∼0.1 cm−1 of

experimental accuracy, even at high energies.12,13 The dis-
sociative recombination (DR) of H3

+ with an electron is the
simplest possible polyatomic DR process,14,15 and high-
resolution spectroscopy has helped to address the ongoing
fundamental questions about its nuclear-spin-dependent re-
combination rates.16−23

Spectroscopy of H3
+ has also profoundly impacted the

astrophysics community. H3
+ had long been known to be the

initiator of ion−molecule chemistry in the interstellar
medium,24,25 but the infrared spectrum was ultimately what
enabled its detection in the interstellar medium26−28 as well as in
planetary atmospheres.29−31 In interstellar clouds, H3

+ is
measured in absorption, facilitating direct estimates of its
abundance, and owing to its simple chemistry, the abundance
can be related to the cosmic ray ionization rate in a direct fashion.
Using this method, subsequent observations of H3

+ have es-
tablished that the cosmic ray ionization rate in diffuse molecular
clouds is an order of magnitude greater than previously
thought.32,33 H3

+ is also seen in sight lines toward the Galactic
center, where it is used as a probe of temperature and density.34,35

A particularly fascinating example at the intersection of
chemical physics, astrophysics, and high-resolution spectroscopy
is the case of the H3

+ +H2→H2 +H3
+ proton scrambling reaction.

From a chemical physics standpoint, this reaction exhibits selec-
tion rules based on the symmetries of the reactants’ rovibronic

and nuclear spin state,36 or alternatively, the selection rules can
be derived in terms of nuclear spin angular momentum algebra.37

Because of the weakness of the nuclear magnetic interaction, the
two nuclear spin modifications (o-H3

+, angular momentum
I = (3/2), symmetry Γns = A1; p-H3

+, I = (1/2), Γns = E) can be
regarded as separate chemical species; interconversion can only
take place by means of reactive collisions or by interaction with a
strong inhomogeneous magnetic field. As such, the H3

+ + H2 →
H2 + H3

+ reaction has seen considerable theoretical treatment,
especially in recent years,38−41 and the effects of the nuclear spin
selection rules have been experimentally studied by high-
resolution spectroscopy of H3

+ in hydrogenic plasmas.42−44

However, beyond the fundamentally intriguing chemical physics,
this reaction is likely the most commonly occurring bimolecular
reaction in the Universe. It plays a key role in establishing the
“nuclear spin temperature” of H3

+ in diffuse molecular clouds,45

and the partially deuterium-substituted versions of the H3
+ + H2

reaction have the greatest influence on deuterium fractionation
in dense clouds and prestellar cores.46−48

The applications mentioned above involve spectroscopically
measuring the relative abundances of the two nuclear spin
modifications of H3

+. Being a system composed of three
indistinguishable nuclei, under the Born−Oppenheimer approx-
imation, the nuclear Hamiltonian for H3

+ must be invariant with
respect to any permutation of the nuclei. Furthermore, because
the nuclei in question are fermions, Fermi−Dirac statistics apply,
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and the total molecular wave function must be antisymmetric
under pairwise permutations. In the framework of permutation-
inversion group theory,49 H3

+ belongs to the S3* molecular
symmetry group (see Table 1). For the majority of this work, the
inversion symmetry (and corresponding parity labels on the
representations) is not needed; therefore, for simplicity, the S3
permutation group will be used instead; this is also shown in
Table 1.50 In group theoretical terms, the requirement placed on

the total wave function by Fermi−Dirac statistics is that its total
symmetry Γtot must be A2 as this is the only irreducible
representation (irrep) under S3 whose character is −1 with
respect to all odd permutation cycles and +1 to all even cycles.
Considering again the weakness of the nuclear magnetic
interaction, the nuclear spin wave function can be treated
separately from the rovibrational wave function, and the strict
symmetry requirement is that Γtot = A2 ⊆ Γrv ⊗ Γns.

51 By
inspection of the S3 multiplication table (Table 2), it is apparent

that only certain combinations of nuclear spin and rovibrational
states give the required symmetry, that is, o-H3

+ and p-H3
+

correspond to different rovibrational states. It is this property
that allows the abundances of the nuclear spin modifications to
be measured using high-resolution spectroscopy.
While the relationship between the nuclear spin and

rovibrational wave functions enables quantification of o-H3
+ and

p-H3
+ from spectroscopic measurements, it also introduces

subtleties that need to be carefully respected. The fundamental
relationship in absorption spectroscopy, which is generally
employed for these types of measurements, is the Beer−Lambert
law, It(ν) = I0(ν) exp[−σ(ν)nL], where I0(ν) is the intensity of
the incident radiation field at frequency ν and It is the intensity
of the radiation transmitted after passage through a sample of the
molecule of interest of length L and number density n and whose
absorption cross section is σ. As It, I0, and σ are all frequency-
dependent, integration over all frequencies is required to
rigorously determine the value n (assuming σ and L are
known). From a practical standpoint, measuring the spectrum of
a molecule at all frequencies is nearly impossible, and the task is
often impractical even if only the frequencies at which the
molecule has detectable absorption are considered. Thus, in the

vast majority of cases, approximations and/or assumptions must
be made to infer the total number density of a molecule given
observations of a limited number of spectroscopic transitions;
often, local thermodynamic equilibrium is invoked, and a
Boltzmann distribution of the molecule’s population among its
states is assumed. However, for H3

+, frequently, the o-H3
+/p-H3

+

ratio is inconsistent with a Boltzmann distribution, and special
care is required to properly account for this fact when
interpreting a spectrum.
In this paper, the combinations of the nuclear spin wave

functions of H3
+ with its rovibrational wave functions are

discussed in detail. The effects of exchange symmetry on
the nature of the total wave function, particularly in regard to the
degeneracies of the states, are enumerated by examining the
forms of transformation matrices in the S3 group. First, the
nuclear spin states of H3

+ are expressed in terms of a coupled
angular momentum basis, and then the rovibrational states are
expressed in terms of a basis of symmetric top wave functions
with vibrational angular momenta. A direct product basis
between the nuclear spin and rovibrational states is constructed,
and linear combinations that satisfy exchange symmetry are
explicitly found. Finally, the results of these calculations are used
to examine aspects of the symmetry and degeneracy of H3

+ states
that pertain to experimental spectroscopy and chemical physics
in three areas: its high-temperature statistical weights, its “nuclear
spin temperature”, and its proton-transfer reactions at low
temperature. From the results of these calculations, it is inferred
that the H2 molecules left behind in proton-transfer reactions of
ground-state p-H3

+ will have distribution of 1:1 ortho/para-H2.
This is an important result for studies of deuterium fractionation
in the interstellar medium, where only the lowest-energy states of
o-H3

+ and p-H3
+ are populated.

2. SYMMETRY OF H3
+

2.1. Nuclear Spin. The goal of this section is to derive the
nuclear spin wave functions for o-H3

+ and p-H3
+. Because the

proton is a spin-(1/2) fermion, there are (2 × (1/2) + 1)3 = 8
possible ways to couple the three spins in H3

+. The symmetry
properties of the resultant combinations can be quickly derived
from group theory as the character χ[R] of the total reducible
representation of n particles of spin i under the permutation
operation R is χ[R] = (2i + 1)n−x, where x is the number of
pairwise permutations (2-cycles) in operation R. For a system
of three spin-(1/2) particles in the S3 group, the reducible
representation of all combinations Γr has the characters χ[E] = 8,
χ[(12)] = 4, and χ[(123)] = 2, and using standard orthogonality
relationships in group theory, the irreps are found to be Γr = 4A1
⊕ 2E. This result implies that there are four H3

+ nuclear spin wave
functions that are totally symmetric under the operations of the
S3 group and also two pairs of wave functions that each transform
together as E (note that E is a two-dimensional representation).
Thus, there are four wave functions of each type; the 4A1 wave
functions are defined as o-H3

+, and the 2E wave functions are
defined as p-H3

+, despite the fact that the labels in this case are
arbitrary.
There are multiple ways to construct a coupled nuclear spin

basis set from an uncoupled basis; here, we use angular
momentum coupling.52 In this framework, the uncoupled basis
consists of kets |Ia,ma⟩, where Ia is the total nuclear spin angular
momentum of particle a and ma is its projection onto a chosen
axis. H3

+ is represented as three such particles, and as all have
I = (1/2), the values of I are omitted for brevity, and the un-
coupled basis consists of the three projections |ma,mb,mc⟩ onto

Table 1. S3 and S3* Character Tables

S3 E 2(123) 3(12)

A1 1 1 1
A2 1 1 −1
E 2 −1 0

S3* E 2(123) 3(12) E* 2(123)* 3(12)*

A1′ 1 1 1 1 1 1
A2′ 1 1 −1 1 1 −1
E′ 2 −1 0 2 −1 0
A1″ 1 1 1 −1 −1 −1
A2″ 1 1 −1 −1 −1 1
E″ 2 −1 0 −2 1 0

Table 2. S3 Multiplication Table

S3 A1 A2 E

A1 A1 A2 E
A2 A2 A1 E
E E E A1 ⊕ A2 ⊕ E
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some mutually chosen axis. To construct the coupled basis, the
angular momentum of one pair of particles is first coupled, and
then their coupled angular momentum is then coupled to the
remaining particle. The coupling coefficients are Clebsch−
Gordan coefficients ⟨Ix,mx;Iy,my|Iz,mz⟩, where mz = mx + my and
Iz can take the values {Ix + Iy, |Ix + Iy − 1|, ..., |Ix − Iy|}. In the end,
the six quantum numbers that specify the coupled basis states are
|I3,m3,I2,Ia,Ib,Ic⟩, where I3 is the total angular momentum of the
three-particle system, m3 its projection, and I2 the coupled
angular momentum of two arbitrarily chosen particles (for H3

+,
this can be 0 or 1). Again, like in the uncoupled basis, Ia, Ib, and Ic
are all (1/2) and are omitted for brevity. Mathematically, the
coupled basis states are calculated by

∑| ⟩ = ⟨ | ⟩⟨ | ⟩

× | ⟩

I m I I m I m I m I m I m I m

m m m

, , , ; , , , ; , ,

, ,

m m m
c c a a b b

a b c

3 3 2
, ,

2 2 3 3 2 2
a b c

(1)

where m2 =ma +mb as I2 has been chosen as the coupled angular
momentum of protons a and b (the choice is arbitrary as the
labels a, b, and c can be swapped without physical consequence).
The results are listed in Table 3, where ↑ and ↓ are used to

represent projections of +(1/2) and −(1/2), respectively, in the
uncoupled basis.
As can be seen by inspection, the four wave functions with

A1 symmetry all have I3 = (3/2), and correspond to o-H3
+. The

remaining coupled wave functions are grouped into pairs
having E symmetry; these all have I3 = (1/2) and correspond
to p-H3

+. While the E symmetry may not be apparent by
inspection, it can be confirmed by writing out explicitly the
transformation matrices for the permutation operators in the
S3 group. The matrix elements for operator R are calculated
as ⟨I3′,m3′,I2′|R|I3,m3,I2⟩. The operators R act directly on the
uncoupled basis, for example, (12)|↑↓↑⟩ = |↓↑↑⟩. Considering
just the four I3 = (1/2) wave functions, the transformation
matrices for all S3 operators (except E, which is the identity
matrix) are

=

−

− −

−

− −

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

(123)

1
2

3
2

0 0

3
2

1
2

0 0

0 0
1
2

3
2

0 0
3

2
1
2

=

− −

−

− −

−

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

(132)

1
2

3
2

0 0

3
2

1
2

0 0

0 0
1
2

3
2

0 0
3

2
1
2

=
−

−

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
(12)

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

=

− −

−

− −

−

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

(23)

1
2

3
2

0 0

3
2

1
2

0 0

0 0
1
2

3
2

0 0
3

2
1
2

=

−

−

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

(13)

1
2

3
2

0 0

3
2

1
2

0 0

0 0
1
2

3
2

0 0
3

2
1
2

The ordering of the rows and columns of these matrices are the
same as the ordering of the wave functions in Table 3, that is, the
basis states are unit vectors in the space

−

−

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

1
2

,
1
2

, 1

1
2

,
1
2

, 0

1
2

,
1
2

, 1

1
2

,
1
2

, 0

As expected from the 2E symmetry, these matrices can be
broken into identical 2× 2matrices, and each such matrix has the
appropriate trace (i.e., character) for the operation. For
completeness, it can be seen by inspection that the four o-H3

+

wave functions each transform as the 1 × 1 identity matrix under
all R ∈ S3.

Table 3. Coupled Nuclear Spin Wave Functions of H3
+

Γns coupled basis uncoupled basis

A1 |(3/2),(3/2),1⟩ |↑↑↑⟩
A1 |(3/2),(1/2),1⟩ (1/√3)(|↑↑↓⟩ + |↑↓↑⟩ + |↓↑↑⟩)
A1 |(3/2),−(1/2),1⟩ (1/√3)(|↑↓↓⟩ + |↓↑↓⟩ + |↓↓↑⟩)
A1 |(3/2),−(3/2),1⟩ |↓↓↓⟩
E |(1/2),(1/2),1⟩ (1/√6)(|↓↑↑⟩ + |↑↓↑⟩ − 2|↑↑↓⟩)

|(1/2),(1/2),0⟩ (1/√2)(|↑↓↑⟩ − |↓↑↑⟩)
E |(1/2),−(1/2),1⟩ (1/√6)(2|↓↓↑⟩ − |↓↑↓⟩ − |↑↓↓⟩)

|(1/2),−(1/2),0⟩ (1/√2)(|↑↓↓⟩ − |↓↑↓⟩)
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2.2. Rotation−Vibration. The symmetry properties of the
rotation−vibration wave functions of H3

+ have been presented in
detail a number of times (for one example, see the Ph.D. thesis of
McCall53); therefore, only the salient properties will be
summarized here. Analysis of the internal coordinates of H3

+

shows that its vibrations consist of a totally symmetric stretch (ν1,
symmetry A1) and a pair of degenerate antisymmetric stretches
(ν2, E). From a symmetry standpoint, the relevant quantum
number is the projection of the total vibrational angular
momentum ( ) of the degenerate modes onto the molecular
axis, which, for a given number of quanta in ν2, can take values {ν2,
ν2− 2, ...,−ν2}. This vibrational angularmomentum couples to the
rotational angular momentum to determine the overall rovibra-
tional symmetry.
As the equilibrium geometry of H3

+ is an equilateral triangle, it
is convenient to use a basis of symmetric top wave functions to
represent its rotational structure.54 These are the kets |J,k,m⟩,
where J is the total rotational angular momentum, k is its
projection onto the molecular axis, and m its projection onto a
space-fixed axis. Like all angular momentum projections, k and
m can take integer values between J and −J. In a field-free
environment, the m states for a given J and k are all degenerate
and contribute only a (2J + 1)-fold degeneracy; thus, the
symmetric top states can be represented just by |J,k⟩.
As mentioned above, the vibrational angular momentum

couples to the molecular rotation, and as a result, the total ket for
a rovibrational state is | ⟩J k, , . The symmetry representations
are determined by converting the permutation-inversion
operations from the S3* group into equivalent rotation operators,
calculating the traces of the transformation matrices of these
operators in the | ⟩J k, , basis and reducing (for details, see the
book by Bunker and Jensen49). For H3

+, the results of these
calculations for states with = 0 are shown in Table 4; similar

tables can be derived for ≠ 0. Further analysis53 shows that
under symmetry operations, the quantity −k is important for
determining the symmetry of the | ⟩J k, , state; therefore, this is
given a quantum number ≡ −g k . Several results arise:
•The parity of a state | ⟩J k, , in S3* is even (′) if k is even and

odd (″) if k is odd. Parity is important for deriving selection rules
for transitions but not for nuclear spin applications. Therefore,
without loss of generality, the irreps from S3 will be used here for
concision, but the parity of any state under S3* is easily obtained
by inspection of the value of k.
•Time reversal symmetry implies that the states | ⟩J k, , and

| − − ⟩J k, , are degenerate; therefore, the unsigned quantum
number ≡ | | = | − |G g k is often used to label both states
together.55

•The symmetry of |J,k,l⟩ in S3 can be determined from G (see
Table 5).

Finally, the transformation matrices with elements
⟨ ′ ′ ′| | ⟩J k J kR, , , , (R∈S3) are enumerated here. Instead of
writing out large (2J + 1)-dimensional matrices for each value of
for each operator R, by exploiting the previously derived
symmetry properties, they can be broken into (J + 1) identical
two-dimensional matrices plus a one-dimensional matrix for

= 0 and 2(J + 1) identical two-dimensional matrices for each
| | ≠ 0. The one-dimensional matrices arise when = =k 0,
and they are simply E = (1), (12) = (23) = (13) = ((−1)J), and
(123) = (132) = (1). The other matrices are two-dimensional in
the basis defined by unit vectors in

| ⟩

| − − ⟩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

J k

J k

, ,

, ,

and have the forms

=
−

−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟(12)

0 ( 1)

( 1) 0

J

J

=
−

−

π

π

−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟(23)

0 ( 1) e

( 1) e 0

J g

J g

4 i /3

4 i /3

=
−

−

π

π−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟(13)

0 ( 1) e

( 1) e 0

J g

J g

4 i /3

4 i /3

=
π

π−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟(123)

e 0

0 e

g

g

2 i /3

2 i /3

=
π

π

−⎛
⎝
⎜⎜

⎞
⎠
⎟⎟(132)

e 0

0 e

g

g

2 i /3

2 i /3

2.3. Total Nuclear Wave Functions. In the absence of
observable spin−rotation coupling, the symmetry of the total
nuclear wave function can be obtained simply from a direct
product of the rovibrational wave functions with the nuclear
spin wave functions. Inspection of the S3 multiplication table
(Table 2) shows that in order to obtain an A2 representation
and satisfy exchange symmetry, A1 states must combine with
A2 states (and vice versa), while E states must combine with
other E states. Thus, the nuclear spin modifications having
4A1 ⊕ 2E symmetry combine with different rovibrational
states.

2.3.1. = =k 0 . This special case is the most straightforward
of all as the transformation matrices of the rovibrational states are
one-dimensional. The direct product of the (2J + 1)|J,0,0⟩ states
with the nuclear spin wave functions gives (2J + 1)× 4 states with

Table 4. Irreducible Representations of Rotational Angular
Momentum States with = 0

J Γrv in S3 ( = 0)a

6nb n(2A1 ⊕ 2A2 ⊕ 4E) ⊕ A1

6n + 1 n(2A1 ⊕ 2A2 ⊕ 4E) ⊕ A2 ⊕ E
6n + 2 n(2A1 ⊕ 2A2 ⊕ 4E) ⊕ A1 ⊕ 2E
6n + 3 n(2A1 ⊕ 2A2 ⊕ 4E) ⊕ A1 ⊕ 2A2 ⊕ 2E
6n + 4 n(2A1 ⊕ 2A2 ⊕ 4E) ⊕ 2A1 ⊕ A2 ⊕ 3E
6n + 5 n(2A1 ⊕ 2A2 ⊕ 4E) ⊕ A1 ⊕ 2A2 ⊕ 4E

aThe parity is ignored in S3, but for a state | ⟩J k, , , its parity in S3* is
even (′) if k is even and odd (″) if k is odd. bn is a non-negative
integer.

Table 5. Irreducible Representations of H3
+ Rotation−

Vibration States | ⟩J k, , in the S3 Permutation Group

G Γrv in S3

0, ( = =k 0 ), J even A1

0, ( = =k 0 ), J odd A2

3n, ( ≠ ≠k 0 ) A1 ⊕ A2

3n ± 1 E
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A1 symmetry if J is even orA2 symmetry if J is odd and (2J + 1)× 2
pairs of states with E symmetry. This is easily observed by taking
direct products of the transformation matrices presented in the
previous sections. Under the requirements of exchange
symmetry, only the (2J + 1) × 4 A2 states are allowed. Thus,
only the I = (3/2) nuclear spin wave functions with A1 symmetry
(o-H3

+) can combine with |J,0,0⟩ states and only when J is odd,
leading to the well-known missing rotational levels in the ground
vibrational state of H3

+.
2.3.2. g = 3n. When g = 3n ( ∈ n ), the exponential

terms in the rovibrational transformation matrices all
become unity. By taking the linear combinations
| ⟩ = | ⟩ ± | − − ⟩±J k J k J k, , ( , , , , )/ 2 , the (12)-class trans-
formation matrices become

= = =
−

− −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟(12) (23) (13)

( 1) 0

0 ( 1)

J

J

while the (123)-class matrices remain the identity matrix.
Thus, the | ⟩+J k, , and | ⟩−J k, , states each can be rep-
resented one-dimensionally. If J is even, then these two states
have A1 and A2 symmetry, respectively, and vice versa if J is
odd. The direct product of these rovibrational states with the
nuclear spin states in this case is then as straightforward as
the case above, but there are no missing rotational levels.
Each g = 3n state with A2 symmetry can combine with the
4 o-H3

+ nuclear spin states to give (2J + 1) × 4 states with the
required total A2 symmetry.
2.3.3. g = 3n ± 1. As shown in Table 5, rovibrational wave

functions with g = 3n ± 1 have E symmetry under S3, and
therefore, these must combine with E nuclear spin wave
functions in order to satisfy exchange symmetry (see Table 2).
For a given E pair of rovibrational states | ⟩J k, , and | − − ⟩J k, , ,
a total of eight possible combinations with |(1/2),m3,I2⟩ states
can be constructed. Under the S3 group, these eight
combinations form a representation that reduces as E ⊗ 2E =
2A1 ⊕ 2A2 ⊕ 2E; therefore, only two of the eight combinations
satisfy exchange symmetry.
To find the linear combinations with A2 symmetry, we will

construct a direct product basis of rovibrational states with
I3 = (1/2) nuclear spin states. Taking advantage of the fact that
them3 = (1/2) nuclear spin wave functions transform exactly the
same as those with m3 = −(1/2), it is sufficient to consider
products involving only one of the two E pairs as the results for
the other pair are identical. The direct product basis consists of
unit vectors in the vector space

− −

− −

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

J k

J k

J k

J k

, , ,
1
2

,
1
2

, 1

, , ,
1
2

,
1
2

, 0

, , ,
1
2

,
1
2

, 1

, , ,
1
2

,
1
2

, 0

and the transformation matrices in this basis are simply the
Kronecker products of the corresponding matrices shown
previously. These matrices can be brought into block diagonal

form consistent with a direct sum of A1 ⊕ A2 ⊕ E irreps by a
unitary change of basis.
Suitable basis states are found by applying symmetry

projectors49 to the direct product basis states. A symmetry
projector for irrep Γi has the form

∑ χ̂ =Γ f

h
p R R( )ii

where f i is the dimension of Γi, h is the order of the group, R is an
element of the group, χ(R) is the character ofR inΓi, and the sum
is over all elements in the group. The new basis consists of the

linear combinations ̂ J kp , , , , , 1A 1
2

1
2

1 , ̂ J kp , , , , , 1A 1
2

1
2

2 ,

̂ J kp , , , , , 1E 1
2

1
2

, and ̂ − −J kp , , , , , 1E 1
2

1
2

, and they are

shown explicitly in the top half of Table 6.56 The unitary change-
of-basis matrix

=

∓ ∓ ±

− − −

± − ∓ − ±

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

T

1
2

1
2

1
2

0

i
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i
2

i
2

0

( 1)
2

( 1)
2

0
1
2

i( 1)
2

i( 1)
2

0
i
2

J J

J J

where the signs are consistent with g = 3n ± 1, allows conversion
from the direct product basis to the symmetrized basis.
After applying the unitary change of basis R′ = T†RT, the

transformation matrices in the new symmetrized basis R′ are
brought into the appropriate block diagonal form

=
−

−

−

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
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0 0 ( 1) 0

J
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−
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+
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π

π

π

π

±

±

∓

∓

⎛

⎝
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⎞

⎠
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(23)
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0 1 0 0
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( 1) e
1 e
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( 1) e
1 e

0

J

J

2 i/3

2 i/3
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2 i/3
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− −
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π

π

π

π

∓

∓

±

±

⎛
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⎞
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1 0 0 0
0 1 0 0
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( 1) e
1 e

0 0
( 1) e
1 e

0

J

J

2 i/3
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π

π

±

±

±

⎛

⎝
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⎞

⎠
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1 e
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π
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1

1 e
0
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e

1 e
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Identical results are derived for the E pair of nuclear spin basis
states with m3 = −(1/2) (see the bottom half of Table 6). Thus,
pairs of rovibrational wave functions with g = 3n ± 1 combine
with the four I3 = (1/2) (p-H3

+) nuclear spin states to give a total
of two allowed states [ignoring the (2J + 1)-fold degeneracy].

3. DISCUSSION
Having expressed the nuclear wave function for H3

+ in terms of
linear combinations of rovibrational and nuclear spin basis states,
we can now consider the implications of these results for the
interpretation of experiments. We will focus on three aspects, the
high-temperature statistical weights of o-H3

+ and p-H3
+, the “spin

temperature” of H3
+, and proton-transfer reactions at low

temperature.
3.1. Statistical Weights. The statistical weights of o-H3

+ and
p-H3

+ are important for the aforementioned proton scrambling
reaction H3

+ + H2→H2 +H3
+. As this reaction proceeds through a

(H5
+)* collision complex, the protons in the reactant H3

+ and H2
molecules can rearrange, in some cases resulting effectively in
ortho−para conversion. In the high-temperature limit, the
relative rates of the 16 possible reactions consisting of com-
binations of reactant and product pairs (e.g., o-H3

+ + p-H2→ o-H2 +
p-H3

+) can be inferred by simply counting the number of pathways
connecting the reactants with their respective products. Thus, it is
necessary to know how many o-H3

+ states exist relative to p-H3
+

states.

It is well-known and experimentally observed that the ortho/
para ratio of H3

+ at high temperature is 1:1; however, various
different explanations for this ratio have been given. According to
Oka,37 the high-temperature statistical weights are simply
proportional to the number of nuclear spin wave functions
sharing a common total angular momentum, which is easily
calculated using angular momentum algebra. For H3

+,
= ⊕ 21/2

3
3/2 1/2, where DI is the rotation group rep-

resentation of a nuclear spin angular momentum DI with
degeneracy 2I + 1. The coefficient in front of each term is the
dimension of the representation, and thus the total number of
nuclear spin wave functions of each type is the dimension times
the degeneracy of each representation, yielding ortho/para = 4:4
for H3

+.
Hugo et al.39 instead explain that the statistical weights arise

from the frequencies and dimensions of the irreps of the nuclear
spin wave functions (Γns) rather than from the rotation group
representations of the nuclear spin angular momentum. The
dimension of Γns is related to the high-temperature statistical
weights because the number of rovibrational states having the
same symmetry (Γrv = Γns) is proportional to the dimension of
Γrv. This can be verified for H3

+ by inspection of Table 4; in the
limit that J is large, there are twice as many E states as A2 or A1
states. It should be noted that this explanation is imprecise as the
appropriate rovibrational states are not strictly those with the
same symmetry as Γns but rather those whose products contain
the irrep that satisfies exchange symmetry (in the case that
multiple representations satisfy exchange symmetry, as in
methane, these must also be taken into account). For instance,
for o-H3

+ (A1), the appropriate rovibrational states are those with
A2 symmetry rather than A1 as A1 ⊗ A2 = A2. Nevertheless, the
results of Hugo et al. are correct for H3

+, Γns = 4A1 ⊕ 2E, and the
same results are obtained for o-H3

+/p-H3
+, (4 × 1):(2 × 2).

The results in the present work are consistent with both of
these explanations as there is a 1:1 mapping between nuclear spin
angular momentum and symmetry irreps. Oka’s method works
for H3

+ as he relies on the fact that the requirement of exchange
symmetry automatically takes into account the number of
rovibrational states with which the nuclear spin wave functions
can combine, and this is borne out by the detailed explanation by
Hugo et al. The situation becomes more interesting when the 1:1
mapping breaks down, as in D3

+. Angular momentum algebra
gives = ⊕ ⊕ ⊕( ) 2 31

3
3 2 1 0, while the symmetry

Table 6. Linear Combinations of Direct Product Basis Functions that Transform as irreps of S3, with g = 3n ± 1 and I3 = (1/2)

Γ linear combination

m3 = (1/2)

A1 ∓ + − − − ± − − −⎡⎣ ⎤⎦J k J k J k J k, , , , , 1 i , , , , , 0 ( 1) , , , , , 1 i( 1) , , , , , 0J J1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

A2 ∓ − − − − ∓ − − −⎡⎣ ⎤⎦J k J k J k J k, , , , , 1 i , , , , , 0 ( 1) , , , , , 1 i( 1) , , , , , 0J J1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

E ±⎡⎣ ⎤⎦J k J k, , , , , 1 i , , , , , 01
2

1
2

1
2

1
2

1
2

E − − ∓ − −⎡⎣ ⎤⎦J k J k, , , , , 1 i , , , , , 01
2

1
2

1
2

1
2

1
2

m3 = −(1/2)
A1 − ∓ − + − − − − ± − − − −⎡⎣ ⎤⎦J k J k J k J k, , , , , 1 i , , , , , 0 ( 1) , , , , , 1 i( 1) , , , , , 0J J1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

A2 − ∓ − − − − − − ∓ − − − −⎡⎣ ⎤⎦J k J k J k J k, , , , , 1 i , , , , , 0 ( 1) , , , , , 1 i( 1) , , , , , 0J J1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

E − ± −⎡⎣ ⎤⎦J k J k, , , , , 1 i , , , , , 01
2

1
2

1
2

1
2

1
2

E − − − ∓ − − −⎡⎣ ⎤⎦J k J k, , , , , 1 i , , , , , 01
2

1
2

1
2

1
2

1
2
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irreps are 10A1⊕ 16E⊕ A2. To first order, these can be brought
into agreement by recognizing that the 3 1 rotation group
representation breaks down into 3A1⊕ 3E, but it has been called
into question57 whether nuclear spin angular momentum is a
good quantum number in this context. Applying the methods in
the present work to D3

+, while beyond the scope of this paper,
may provide some insight for experiments that can test whether
states with the same symmetry but different nuclear spin angular
momentum can be distinguished.
3.2. Spin Temperature of H3

+. In astronomical studies of H3
+

in the interstellar medium, typically only rovibrational transitions
in the infrared arising from the two lowest levels [(J,G) = (1,1)
and (1,0)] in the ν2 fundamental band are observed, owing to the
low temperatures and the faster rate of radiative relaxation
relative to collisional pumping.58 From the values of the quantum
number G of these two states, it is evident that the ground state
(1,1) is a p-H3

+ state, while the (1,0) state,∼32 K higher in energy,
is o-H3

+. If, as is often assumed,27,28 the H3
+ + H2 → H2 + H3

+

reaction is fast enough to bring the ortho/para ratio into
thermodynamic equilibrium with the background gas (though
the validity of this assumption in at least some environments is
questionable45), the observed spectrum can be used to infer the
kinetic temperature of the cloud

μ
μ

= = −Δ⎜ ⎟⎛
⎝

⎞
⎠

n
n

I

I

g

g
E

T
exp10

11

10 11
2

11 10
2

10

11

where the subscripts are the J and G quantum numbers of the
state, n the number density, I the observed intensity of the
transition in the spectrum, μ2 the transition dipole moment, g
the degeneracy of the state, andΔE = (E10− E11)/kB≈ 32 K. The
quantity T in this equation is the so-called spin temperature of
H3

+, and it is assumed to be equal to the kinetic temperature.
Setting aside any questions regarding the applicability of this

calculation for the physics of interstellar clouds, the aspect of this
equation relevant for this paper is the ratio of state degeneracies,
g10/g11. This quantity (or similar quantities) comes into play any
time populations of p-H3

+ and o-H3
+ are compared. The correct

answer, as is evident from the calculations above, is 12/6, and
indeed, this is the value used in the astronomical studies,27,28

though using recommendations fromat least one other publication,5

the value 12/12 would be inferred as the authors state that H3
+ has a

“strict double degeneracy forG >0”. Application of this statement to
the ground state would imply that the (J,g) = (1,1) and (1,−1) states
contribute an additional factor of 2 to the degeneracy, and we
assume that the authors intended to imply that the total degeneracy
is given by 2 × (2J + 1)(2I + 1) for all states with G > 0 and
(2J + 1)(2I + 1) for states with G = 0.
In section 2.3, we derived the linear combinations of

rovibrational and nuclear spin states that satisfy the total sym-
metry requirement of A2. To find the degeneracy of the ground-
state wave function, we note that in the ground vibrational state,

= 0, and therefore, the rovibrational kets |1,1,0⟩ and |1,−1,0⟩
are involved. Each of these kets can combine with the four p-H3

+

nuclear spin wave functions, giving a total of eight total nuclear
wave functions, ignoring the (2J + 1)-fold degeneracy. However,
of those eight wave functions, only two linear combinations have
A2 symmetry (see Table 6, substituting = = =J k1, 1, 0)
and are the only allowed states. Thus, the (J,G) = (1,1) state (and
any p-H3

+ state) has total degeneracy of 2 × (2J + 1), where the
factor of 2 takes into account the nuclear spin and G degeneracies
together, as opposed to 4× (2J +1),whichwould be derived from the
aforementioned publication.5 To complete the example, states with

G > 0 andG = 3n (corresponding to o-H3
+) have a total degeneracy of

4 × (2J + 1) by the arguments discussed in section 2.3.2, while one
would derive 2 × (2J + 1)(2I + 1) = 8 × (2J + 1) under the
assumption of a strict double degeneracy from G > 0.
One further observation can be made related to the

degeneracies of these states. The equation shown above implies
that in the limit that T→ 0, n10/n11→ 0, and thus, the o-H3

+/p-H3
+

ratio should approach 0 (alternatively, the fraction of p-H3
+, p3,

approaches 1), while in the high-temperature limit, as discussed
earlier, p3 → (1/2). A third limit, though, is given by the ratio of
the degeneracies of the lowest two states, p3 → (1/3) (o-H3

+/p-
H3

+→ 2). Such a situation could be achieved in an environment in
which o-H3

+ ↔ p-H3
+ interconversion occurs freely, but only the

two lowest states of H3
+ can be significantly populated. This may

be possible in a collisionally cold environment with excess o-H2, and
it has been anticipated by kinetic models of the H3

+ + H2 reaction at
low temperature,40 though the authors did not focus on this aspect.
An enhancement of o-H3

+ above the high-temperature limit may be
desirable for studies of nuclear-spin-dependent reaction rates of H3

+

(such as dissociative recombination).
Such an enhancement may have been observed in preliminary

measurements reported by Kreckel et al. in a cold 22-pole ion
trap.59 In this study, the authors attempted to manipulate the
ortho/para ratio of H3

+ by changing the ortho/para ratio of the H2
fed into a high-temperature discharge source and then cooling
theH3

+ ions with buffer gas inside of a 22-pole ion trap. Leakage of
the H2 from the source into the trap caused H3

+ + H2 nuclear spin
interconversion reactions to occur, and the final ortho/para ratio
of H3

+ was found to be 60:40 (p3 = 0.4) when normal H2 (ortho/
para = 3:1) was used as the source gas. It is possible that at even
lower temperatures, the value of p3 would continue to approach
the limiting value of (1/3).

3.3. Proton-Transfer Reactions. The proclivity of H3
+ to

transfer one of its protons to another molecule, combined with
its ready formation in space, makes it one of the most important
molecules in interstellar chemistry.24,25 An aspect of the proton-
transfer process rarely considered is the nuclear spin
modification of the H2 molecule left behind after the proton-
transfer reaction has occurred. Particularly in colder, denser
regions of space, the ortho/para ratio of H2 has a strong influence
on deuterium fractionation,47,48 and a significant fraction of the
total H2 population is generated from proton-transfer reactions
of H3

+. Thus, it is appropriate to consider the branching fractions
of these proton-transfer reactions, as have been discussed by
Widicus Weaver et al. in the case of H3

+ + O2 → HO2
+ + H2.

60

We will assume a general reaction H3
+ + X→HX+ + H2 whose

mechanism is a direct proton hop (i.e., no complex is formed that
can result in proton scrambling prior to dissociation). When the
reaction involves o-H3

+, application of Oka’s angular momentum
algebra37 quickly shows that only o-H2 can be formed as for-
mation of p-H2 would violate conservation of total nuclear spin
angular momentum. Although the angular momentum algebra
only gives proper branching ratios in the high-temperature limit,
this selection rule for the chemical reaction also applies at the low
temperatures relevant for cold interstellar clouds. However, we
can alternatively derive this result by inspecting the o-H3

+ nuclear
spin wave functions. In this approach, we designate proton c
(in the uncoupled basis) as the proton that is transferred in
the reaction, and this means that the I2 quantum number is the
coupled angular momentum of the two protons that constitute
the resultant H2 product molecule. Proton c is chosen to be
consistent with the wave functions in Table 3; equivalent results
can be derived using protons a or b by altering the angular
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momentum coupling scheme used to derive the nuclear spin
wave functions. In all four o-H3

+ wave functions, I2 = 1, and
therefore, we obtain the same result as the angular momentum
algebra for the branching fraction, but this result applies to every
individual o-H3

+ state.
With p-H3

+, the result is more subtle. Angular momentum
algebra shows that the branching fractions for the formation of
o-H2 and p-H2 are equal in the high-temperature limit, but in
interstellar space, only the lowest rotational state of H3

+ is
populated. Looking at the p-H3

+ wave functions in Table 3 shows
that two of the four have I2 = 1, and the other two have I2 = 0,
which is consistent with the angular momentum algebra.
However, using the results of the direct product basis, we can
see exactly which nuclear spin wave functions contribute to the
lowest state of p-H3

+; these are given by the A2 linear com-
binations in Table 6, substituting J = 1, g = 1, k = 1, and = 0. By
taking the magnitudes squared of the coefficients of those wave
functions, the total probability amplitudes for I2 = 1 and 0 are
equal, implying that even for the lowest rotational state of p-H3

+, a
proton-transfer reaction should have equal branching fractions
for the formation of o-H2 and p-H2. Thus, proton-transfer
reactions involving H3

+ may lead to an enhancement of the o-H2/
p-H2 ratio in cold, dense interstellar clouds as these reactions
produce a much larger fraction of o-H2 than would be expected
from the kinetic temperature of the environment (o-H2/p-H2
is ∼10−3 at 20 K).

4. CONCLUSIONS
In this paper, we have derived the wave functions for H3

+

expressed in terms of linear combinations of direct products of
symmetric top rotational basis states with vibrational angular
momentum and coupled nuclear spin angular momentum basis
states. These wave functions are valid in the limit that J, k, and
are good quantum numbers and are only intended to capture the
elements of the states that contribute to the total symmetry
rather than to serve as an accurate description of the spatial
amplitudes of the true molecular wave function. Exchange
symmetry was taken into account by constructing a symmetrized
basis from the direct product states. Under the new basis, the
transformation matrices of the elements of the S3 permutation
group are of block diagonal form with the appropriate block
dimensionalities and characters; the representations with A2
symmetry satisfy exchange symmetry. Using the results of
these calculations, we have evaluated aspects of the symmetry
and degeneracy of H3

+ (particularly p-H3
+) that have caused

some confusion in the literature. We have also shown that by
inspection of the p-H3

+ nuclear spin wave functions that
contribute to its lowest-energy state, proton-transfer reactions
should to first order give branching fractions for formation of
o-H2 and p-H2 consistent with the predictions of angular
momentum algebra in the high-temperature limit.
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Sanz, C.; Zanchet, A.; Roncero, O. Dynamically Biased Statistical Model
for the ortho/para Conversion in the H3

+ + H2 → H3
+ + H2 Reaction. J.

Chem. Phys. 2012, 137, 094303.
(42) Cordonnier, M.; Uy, D.; Dickson, R. M.; Kerr, K. E.; Zhang, Y.;
Oka, T. Selection Rules for Nuclear Spin Modifications in Ion-Neutral
Reactions Involving H3

+. J. Chem. Phys. 2000, 113, 3181−3193.
(43) Crabtree, K. N.; Kauffman, C. A.; Tom, B. A.; Becķa, E.; McGuire,
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