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Abstract

Hydrogen is the most abundant element in the universe. For this reason, the chemistry of the
interstellar medium is largely dominated by the interaction of hydrogenic neutrals and ions. The
hydrogen molecule, H2, and the simplest polyatomic ion, H+

3 , each exist in one of two forms iden-
tified as ortho or para, which are defined by their total nuclear spins. These spin modifications
have different spectral signatures which can be observed both in the laboratory and the interstellar
medium. H2 and H+

3 have been used to probe the conditions of interstellar clouds, but there are
gaps in our understanding of the mechanisms by which the para-H+

3 fraction is enriched in diffuse
clouds and para-H2 is enriched in dense molecular clouds.

Dissociative recombination is the primary destruction mechanism for H+
3 in diffuse clouds. The

rate coefficient for this process has been measured for highly enriched para-H+
3 and compared with

the rate coefficients for less para-enriched plasmas. The results show that dissociative recombination
for para-H+

3 occurs at a faster rate than for ortho-H+
3 , which validates recent theoretical predictions

but does not explain the enrichment of para-H+
3 in the diffuse interstellar medium.

The H+
3 + H2 reaction, which is arguably the most common bimolecular reaction in the universe,

is explored as the possible mechanism by which the enrichment of both species can occur. Two models
that we developed from recent theoretical work are used to predict the behavior of the reaction under
low temperature conditions. Laboratory measurements were taken over a range from 300 K down to
80 K, and demonstrate that the branching ratio of proton hop to hydrogen exchange is temperature
dependent. This is the first study of this reaction at the cold astrophysical temperatures where it
occurs most of the time.

A comparison of the experimental results with observational data provides strong evidence that
this reaction is the driving mechanism for the steady state enrichment of para-H+

3 in diffuse clouds,
and predictions from the models imply that it is also responsible for the enrichment of para-H+

3

and para-H2 in dense clouds. The results of this work have implications for the use of the H+
3 spin

modifications as astrophysical probes, for understanding the deuterium chemistry of the interstellar
medium, and for the fundamental chemical physics of these very simple molecules.
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Chapter 1

Introduction

Hydrogen is the most abundant element in the universe comprising more than 90% of elements
by total number. If one were to re-design the periodic table of the elements based on cosmic
abundances, it would appear as in Figure 1.1. Due to this abundance, chemical processes in the
interstellar medium are largely governed by hydrogenic species [1, 2]. The H2 in these regions of
space is ionized by cosmic rays, and the ensuing reaction between H2 and H+

2 forms H+
3 . The

simplest of all polyatomic molecules, H+
3 , is one of the dominant ionic species in hydrogen plasmas

in the laboratory [3], and in interstellar plasmas as well. In turn, H+
3 reacts to form many heavier

polyatomics as depicted in Figure 1.2 [4, 5].

Figure 1.1: The astronomer’s periodic table (reproduced from [6]).

Both the H2 molecule and the molecular ion H+
3 exist in one of two different nuclear spin mod-

ifications which can be treated as different chemical species. The symmetrically-aligned ortho-H2

spin modification (I=1) and the anti-aligned para-H2 (I=0) exist with a spin degeneracy ratio of
3:1. The two forms of H+

3 are ortho (I=3/2) and para (I=1/2). Interchange between the spin
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modifications does not readily occur, except by chemical reaction [7, 8] or in the presence of strong
inhomogeneous magnetic fields [9]. This property makes the hydrogenic spin modifications useful
for studying the processes that occur in distant astrophysical environments, and to help us gain a
deeper understanding of the most fundamental and widespread bimolecular reaction in the universe,
H+

3 + H2 → H2 + H+
3 . This chapter will lay the theoretical foundation for this work in addition to

explaining its relevance.
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Figure 1.2: The reaction network that begins with H+
3 (reproduced from [6]).

1.1 Molecular H2

Hydrogen has been instrumental in the development of quantum mechanics because its relative
simplicity made it an ideal system with which to build and exercise new theories. The existence of
the ortho and para forms of H2 was first predicted by Heisenberg and Hund in 1927 [10, 11], and
experimentally observed shortly thereafter by Bonhoeffer [12, 13]. The weighting of the two spin
modifications was calculated around the same time as the experimental verification. It is useful to
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have a basic understanding of the origin of these weighting coefficients, and group theory can be
used to provide this. This section assumes that the reader has a basic knowledge of group theory and
symmetry. If not, good background texts include [14] and [15] for group theory and spectroscopy,
and [16] for permutation and inversion.

The H2 molecule can be represented by the ground state electronic term symbol 1Σ+
g and the

permutation inversion group S∗2 . The permutation-inversion group is formed by multiplying the S2

permutation group by the group E∗, which comes from the inversion operation (Table 1.1).

E∗ E E∗

A
′

1 1
A
′′

1 -1
⊗

S2 E (12)
A 1 1
B 1 -1

=

S∗2 E (12) E∗ (12)∗

A
′

1 1 1 1
B
′

1 -1 1 -1
A
′′

1 1 -1 -1
B
′′

1 -1 -1 1

Table 1.1: S∗2 character table that results from E∗ ⊗ S2.

The total representation for H2 can be written as the product of its representations

Γtotal = Γelectronic ⊗ Γvibrational ⊗ Γrotational ⊗ Γnuclear spin. (1.1)

The electronic term symbol 1Σ+
g shows that the representation for the electronic wavefunction must

be symmetric with respect to reflection (+) and ‘gerade’ or ‘even’ with respect to inversion (12)∗

through its center of symmetry. This corresponds to the character of the A
′

irreducible represen-
tation in S∗2 . Because this is a diatomic, its vibrational states will also be totally symmetric, A

′
.

The rotational representation transforms as (12)|J〉 = (−1)J |J〉 and E∗|J〉 = (−1)J |J〉. This
corresponds to A

′
for even J , and B

′′
for odd J .

The representation for nuclear spin, the parameter we are most interested in, can be found by first
creating a list showing whether a class (or symmetry operation) can permute a particular nuclear
spin modification into itself. The end product is a list of 1’s and 0’s, where a ‘1’ indicates that the
class can permute the spin modification without having to change the spin of its constituents, and
a ‘0’ means it cannot. The inversion operations do not affect the nuclear spin wavefunction, so the
S2 character table can be used instead of S∗2 in order to simplify the calculation. The results are

Spin E (12)
↑↑ 1 1
↑↓ 1 0
↓↑ 1 0
↓↓ 1 1

Γnuclear spin 4 2

Table 1.2: Tallying the effects of nuclear spin permutations in H2.

presented in Table 1.2, and can be decomposed using the usual methods into 3A ⊕ B, indicating
that the ratio of ortho:para=3:1.

In order to determine which J states correspond with which ortho and para nuclear spin states,
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it is necessary to first find the product of equation 1.1 for the two states

Γtotal(Jeven) = A
′ ⊗A

′ ⊗A
′ ⊗ (3A

′ ⊕B
′
) = 3A

′ ⊕B
′

Γtotal(Jodd) = A
′ ⊗A

′ ⊗B
′′ ⊗ (3A

′ ⊕B
′
) = 3B

′′ ⊕A
′′

The Pauli principle states that the overall wavefunction must have antisymmetric character
with respect to the exchange transformation (12), because the wavefunctions of fermions must be
antisymmetric when transformed by (12). Of the representations for Γtotal, only B

′
and B

′′
satisfy

this requirement (see Table 1.1). Therefore, by following the multiplication in the equation above,
one can see that the ortho spin modifications correspond to the odd J states (represented by 3B

′′
),

and the para spin modifications correspond to even J states (represented by B
′
).

Because H2 lacks a dipole moment, there are no dipole-allowed pure rotational or vibrational
transitions. Electronic transitions in the UV are frequently used in astronomical observations [17–19],
as are observations of the weak quadrupole transitions in the mid-IR [20]. There were no direct laser
spectroscopic measurements of ortho or para-H2 performed in this work. Instead, the enrichment of
para-H2 was determined using various other methods (see Chapter 2).

1.2 The simplest polyatomic ion, H+
3

H+
3 was first observed in a laboratory plasma by J. J. Thomson in 1911 [21] by way of early mass-

spectrometric measurements. Within 5 years, Dempster observed that H+
3 is the dominant ionic

species in a hydrogenic plasma [3], and later, Hogness and Lunn determined that the reaction

H+
2 + H2 → H+

3 + H (1.2)

is the mechamism by which it is formed [22]. Although these early experiments were performed
at higher pressures than found in the interstellar medium, the timescales over which the processes
occur in space are much greater and the end result is an abundance of H+

3 ions.
Despite the relatively rapid succession of these early discoveries with H+

3 , observation of its
rovibrational spectrum did not occur for another 55 years. In 1980, Oka obtained the first spectrum
of the infrared ν2 band in a liquid nitrogen cooled plasma [23]. All of the laser spectroscopic
experiments in the present work involve transitions that Oka observed in this first spectrum.

As with H2, it is useful to have an understanding of the states of H+
3 , as well as the selection rules

governing its transitions. A thorough derivation of the symmetries of H+
3 can be found in [6, pg.

5-27], but a brief summary is provided here for completeness.
The symmetry of H+

3 is described by the S∗3 permutation-inversion group. As mentioned earlier,
the Pauli principle requires any valid representation to be antisymmetric with respect to the exchange
of two protons. Additionally for H+

3 , this representation must also be symmetric with respect to the
interchange of all three protons (which is equivalent to two successive exchange operations). The
product of the representations must be

Γelectronic ⊗ Γrovibration ⊗ Γnuclear spin ⊃ A
′
2 or A

′′
2 (1.3)
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where A
′
2 and A

′′
2 are the irreducible representations of S∗3 in which an exchange operation (12) is

antisymmetric and the (12)(23)=(123) is symmetric (see Table 1.3).

S∗3 E 3(12) 2(123) E∗ 3(12)∗ 2(123)∗

A
′
1 1 1 1 1 1 1

A
′
2 1 -1 1 1 -1 1

E
′

2 0 -1 2 0 -1
A
′′
1 1 1 1 -1 -1 -1

A
′′
2 1 -1 1 -1 1 -1

E
′′

2 0 -1 -2 0 1

Table 1.3: S∗3 character table.

The lowest electronic energy state of the H+
3 ion has no nodes [6, pg. 7], meaning that the

electronic wavefunction of H+
3 must be symmetric with respect to exchange. Consequently Γelectronic

must be totally symmetric, leaving

Γrovibration ⊗ Γnuclear spin ⊃ A
′
2 or A

′′
2 . (1.4)

In addition, the lowest lying excited electronic state is a barely bound triplet, with a small Franck-
Condon overlap with the singlet ground state. Therefore, electronic spectroscopy is not a useful tool
for the study of H+

3 .
The H+

3 symmetric stretch ν1 is infrared inactive, whereas the ν2 vibration is doubly degenerate,
IR active, and possesses vibrational angular momentum of ±`. This vibrational motion couples with
rotational manifolds to produce a useful rovibrational spectrum for laboratory spectroscopy and
astronomical observations (H+

3 does not possess a permanent dipole, and therefore does not have
an allowed rotational spectrum). Defining the quantum number g = k − `, where k is the projec-
tion of the rotational quantum number J onto the molecular axis, an analysis of the rovibrational
symmetries shows that

Γrovibration = A
′
1 ⊕A

′
2 or A

′′
1 ⊕A

′′
2 for g = 3n (1.5)

and,
Γrovibration = E

′
or E

′′
for g = 3n± 1 (1.6)

where n is an integer. In all cases, the ′ and ′′ represent the parity of the representation. The
Γnuclear spin can be decomposed to 4A

′
1 ⊕ 2E

′
using the a slightly more complicated version of the

method described in §1.1. Hence, the A
′
1 are the ortho states, and E

′
are the para. Note that this

gives a spin degeneracy ratio of ortho:para = 2:1. With the requirement that Γtotal ⊃ A
′
2 or A

′′
2 ,

this means

ortho ↔ g = 3n

para ↔ g = 3n± 1

because only the product of A
′
2 or A

′′
2 with A

′
1, and E

′
or E

′′
with E

′
will produce A

′
2 or A

′′
2

as required by Eq (1.4). At high temperatures where a significant number of excited states are
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populated, these expressions for g dictate that there will be twice as many para states as there
are ortho. This difference in available states effectively cancels with the nuclear spin degeneracy,
meaning that a normal H2 plasma will have ortho:para-H+

3 = 1:1.

Selection Rule Reason
∆k = 2n± 1 parity must change in a transition
∆I = 0, ∆g = 3n (123)〈J ′k′`′ |µ|Jk`〉 6= 0
∆J = 0,±1 triangle rule
J = 0 = J = 0 triangle rule

Table 1.4: H+
3 selection rules.

Selection rules for dipole-allowed transitions can be derived using the representation of the electric
dipole µ̂ which has the character of A

′′
1 , and are summarized in Table 1.4. Due to the selection rules

∆k = 2n±1 and ∆g = ∆(k− `) = 3n (where the n do not have to be the same integer), a change in
angular momentum of ∆` = ±1 and ∆k = ±1 means that ∆g must = 0. This is the only vibrational
selection rule with which we are concerned because the spectroscopy in this work occurs exclusively
in the fundamental band.

For excited vibrational levels of H+
3 where ` ≥ 1, the increase in Coriolis coupling with the higher

` mixes states to the degree that k is no longer a ‘good’ quantum number. As a result, the number
g = (k − `) is used exclusively instead of k. The quantum number g, however, does not uniquely
define specific states under certain conditions when ` ≥ 1. Whenever J − 1 ≥ |g| ≥ 1, there will
be two sets of quantum numbers k and ` that have the same g in the rovibrationally excited state.
These states can be distinguished by identifying the upper or the lower state of a pair with the same
J and G, where G=|g|. This brings us to the notation used in the remainder of the text to describe
H+

3 rovibrational transitions. Specifically,

R(J,G)u|`

where R represents a transition in which ∆J = +1, J is the rotational quantum number, G = |g|,
and the u|` represent the upper or lower excited state of the transition when a state is not uniquely
defined by G. The transition from the use of g to G requires some explanation. If angular momentum
is subject to time reversal, then the sign of the angular momentum changes. The magnitude of g will
not change under time reversal because the signs of both angular momentum quantum numbers k

and l will be reversed in the relation g = k− l. This, combined with the fact that energy is invariant
to time reversal implies that g = (k − `) → (−k − −`) = −(k − `) = −g, therefore G = |g| [6].
The quantum numbers (J,G)u|` are used to describe a particular state of H+

3 . This notation can be
far more complex and descriptive than portrayed here depending on the types of transitions, and a
more in-depth discussion can be found in [24].

To observe the ortho and para modifications of H+
3 , the ν2 ← 0 transitions from the ground

rotational states of ortho (1, 0), and para (1, 1) were spectroscopically probed, along with a transition
from the first rotationally excited state of para, (2, 2). The key parameters were taken from [24–26]
and are listed in Table 1.5. The transitions are also depicted in Figure 1.3.
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Ground state Energy (cm−1) Transition Frequency (cm−1) µ2 (D2) Einstein A (s−1)

(1,1) 64.121 R(1, 1)u 2726.219 .0158 60.2
(1,0) 86.960 R(1, 0) 2725.898 .0259 98.7
(2,2) 169.295 R(2, 2)` 2762.070 .0177 83.8

Table 1.5: H+
3 states, and lines from ν2 ← 0 used in this work.
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3 .
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1.3 Spin modifications and the interstellar medium

In 1961, Martin, McDaniel, and Meeks first proposed that H+
3 could be found in interstellar space

[27]. In 1996, when detection capabilities had sufficiently improved, Geballe and Oka found H+
3 in

dense molecular clouds [28]. Shortly thereafter, in 1997, McCall, Geballe, Hinkle, and Oka observed
H+

3 in diffuse clouds [29]. The abundance of H2 and a high cosmic ray ionization rate make H+
3 a

major ionic constituent in the interstellar medium.
Observations of the column densities of hydrogenic species along various sightlines have been

used as tools in determining cloud dimensions, cloud densities, and the aforementioned cosmic-ray
ionization rate. Temperature has been inferred in diffuse interstellar clouds using both the ratio of
ortho- to para-H2, and the ratio of ortho- to para-H+

3 [28–34]. Surprisingly, the temperature inferred
using the H+

3 spin modifications is 30-40 K lower than that measured with H2 or by other means.
This indicates a gap in our understanding of how H+

3 is partitioned between the ortho and para
spin modifications [35, 36], specifically, what mechanism is driving the steady state enrichment of
para-H+

3 .
The formation of H+

3 is well understood, even if the mechanisms that guide the steady state
fractions of its spin modifications are not. Destruction of H+

3 occurs primarily by way of proton
donation to CO in dense molecular clouds, and by dissociative recombination with electrons in
diffuse clouds [37, pg. 209-220]. The former is due to the highly acidic character of H+

3 (the proton
affinity of H2 is a mere 4.4 eV) and the abundance of CO in dense clouds as compared to diffuse
clouds in which carbon is mostly found in the form of C+. Dissociative recombination dominates in
diffuse clouds because of the abundance of free electrons and a relatively high recombination rate
coefficient. Both theory and experiment have indicated that the dissociative recombination rate of
H+

3 should be different for the ortho and para spin modifications. Therefore, one of the main thrusts
of this research is to measure a state-specific recombination rate for the two species, and determine
whether this could be the mechanism that is driving the observed para-H+

3 enrichment in the diffuse
interstellar medium.

The ortho:para distribution of molecular hydrogen in dense clouds presents another interesting
astrochemical problem. The para-H2 fraction is enriched to a level consistent with thermalization at
the temperatures of these clouds [18, 20, 38, 39], but the process by which this occurs has not been
satisfactorily explained. The likely mechanisms for the partitioning of spin modifications observed in
H2 are the chemical reactions between hydrogenic species. It has long been assumed that the reaction
H2 + H+ drives the H2 ortho:para ratio in shocked [40, pg. 123-130], photodissociative [41, pg. 143-
149], and prestellar regions [42] of the interstellar medium. This assumption is probably correct
for the diffuse interstellar medium where H+ number densities exceed those of H+

3 by 4 orders of
magnitude [43]. In dense clouds, however, the abundance of H+

3 in comparison to H+, and the higher
rate constant for the reaction,

H+
3 + H2 → H2 + H+

3 , (1.7)

over that of H2+H+ [8], make H+
3 the more likely candidate. It is likely that this would also affect

the H+
3 steady state ortho:para ratio, as alluded to in [30, 44]. Hence, the other major focus of this

work is to explore the dynamics of reaction (1.7) at cold astrophysical temperatures, which will
ultimately enhance our understanding of how the ortho and para spin modifications of both H2 and
H+

3 reach steady state in the interstellar medium.
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The importance of these ortho:para ratios goes beyond mere temperature and enrichment con-
siderations. Recent studies have examied how the H2 ortho:para ratio affects the deuteration of H+

3 ,
which in turn serves as the pathway for introducing deuterium into many of the species found in the
interstellar medium [42, 45]. The extent of H+

3 deuteration is strongly dependent on the fraction of
ortho-H2. This is due to the higher energy of ortho-H2 with respect to para, and the contribution
this energy can make to the equilibrium condition of the reaction by which H+

3 is deuterated. The
fact that reaction (1.7) is so widespread, coupled with its astrochemical implications and the wealth
of physical insight we can gain from this simple system make it not only worthwhile, but essential
to understand.

Both the dissociative recombination and reaction dynamics experiments form the heart of this
work, and are dependent on using H2 gas of varying levels of para-H2 enrichment. Because of this,
we have developed methods for efficiently producing and testing highly enriched para-H2, which are
discussed in Chapter 2. Details regarding the dissociative recombination and reaction dynamics
experiments are presented in Chapters 3 through 6. The capability to produce highly enriched para-
H2 allowed us to perform an ancillary project of general spectroscopic interest in which we attempted
to measure the index of refraction of solid hydrogen. This was done in the hopes of building a solid
hydrogen Raman laser, and is discussed in Appendix E.
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Chapter 2

Para-H2 production and
measurement

In a sample of room temperature H2, the ortho modification in which the proton spins are sym-
metrically combined (I = 1) occurs with 74.93% abundance, while the remainder consists of the
para modification in which the proton spins combine anti-symmetrically (I = 0). In the absence
of external magnetic fields, the interconversion between the two states is extremely slow and the
spin modifications can be treated as separate species. This chapter will briefly present the theory of
ortho to para-H2 conversion, followed by a description of the para-H2 converter that was designed
and built for this project. Finally, the two methods that were used to measure the enrichment will
be discussed.

2.1 Theory

In 1933, Wigner [9] suggested a mechanism for the conversion of ortho-H2 to para-H2. In his theory,
the magnetic dipoles of the ortho-H2 spin modification interact with the magnetic fields produced
by nearby ortho-H2 molecules. The triplet ortho and singlet para spin states are able to mix in the
presence of the magnetic gradients [46]. The transition rate between spin modifications is enhanced
by the presence of inhomogeneous magnetic fields, as provided by a paramagnetic catalyst. Below
∼ 77 K, the mixing of the triplet and singlet states leads to a thermalized distribution where para-H2

is the dominant species [47]. However, Wigner’s theory predicts conversion rates that are orders of
magnitude less than those observed in experiment [48].

Minaev and Ågren proposed a ‘spin catalysis’ mechanism wherein paramagnetic-induced mixing
between the nuclear and electronic wavefunctions increases contact between the ortho and para-H2

spin modifications [49]. A separate theory by Milenko, Sibileva, and Strzhemechny incorporated
temperature-dependent interaction distances to more accurately predict gas phase conversion rates
[50]. Understanding the interconversion between ortho- and para-H2 has been, and continues to
be, an active area of research [51, 52]. Whatever the state of theoretical development, however, the
experimentalist requires an effective method for producing highly enriched para-H2.

Scientific applications requiring precisely controlled samples of para-H2 include nuclear magnetic
resonance techniques that exploit the signal-enhancing para-H2 effect [53], the production of solid hy-
drogen crystals for matrix isolation spectroscopy [54–57], and superfluidity studies [58]. In addition,
dissociative recombination experiments with astrochemical implications [59–62], mass spectroscopic
experiments to study deuterium fractionation in dense molecular clouds [45], and fundamental chem-
ical physics studies involving the spin modifications of hydrogenic species [63, 64] receive continued
attention.
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The first device built to convert ortho-H2 to para-H2 used a tube filled with an activated charcoal
catalyst [12]. The tube was immersed in a cryogen such as liquid nitrogen or liquid hydrogen
(for higher para enrichments), and the backing pressure was set such that the H2 was forced to
flow through the catalyst. Variations on this method, such as a glass bulb containing a bed of
paramagnetic catalyst, have also been successfully employed [65]. Both nickel silica gel (also known
as ‘Apache’) and ferric oxide have been used as the paramagnetic catalyst, with the former exhibiting
higher conversion efficiency [46].

There is a limit to the enrichment that can be achieved when using liquid nitrogen or hydrogen
as the cryogen. A temperature of 77 K results in a 51% para-H2 enrichment, and liquid hydrogen
temperatures (∼20 K) result in an enrichment of 99.8% [46]. With the goal of obtaining higher (≥
99.99%) enrichments, others have used liquid helium as a cryogen in similar types of systems [64].

A more automated converter was developed by Tam and Fajardo [66] using a closed cycle 4He
cryostat. This system merged automated control over a range of temperatures with the high enrich-
ment that comes from using liquid helium as a cryogen. It was optimized to deposit solid para-H2

for matrix isolation spectroscopy at a rate of ∼ 0.11 standard liters per minute (SLM).

2.2 The converter

The para-H2 converter designed and built for this work consists of a locally modified closed-cycle 4He
cryostat (Janis CCS-100/204 Optical 10K Refrigerator), and is conceptually similar to the design
by Tam and Fajardo. The cold-head/piston section of the cryostat is mounted upright on a 0.37 m2

(2×2 ft2) piece of 1.27 cm (1/2 inch) thick aluminum in order to provide stability, safe transport,
and ease of access to interior components. Two small ports near the base of the cold head were
covered by the manufacturer with square aluminum blanks (sealed by o-rings). These were removed
and replaced with similar-sized pieces of aluminum into which 1.59 mm (1/16-inch) union bulkheads
(Swagelok SS-100-61) were welded.

Both bulkheads are connected on the interior to 1.59 mm (1/16-inch) stainless steel tubing that
traverses the length of the cryostat (see Figure 2.2). Two trombone-like bends in the tubing on
both the ingoing and outgoing sides provide enough elasticity to allow easy movement of the coiled
conversion section. A schematic can be found in Figure 2.2 with and without the vacuum shroud
installed (2.2a). Part b of the figure shows the approximate dimensions of the 1.59 mm (1/16”)
stainless steel tubing. Sections ¬ and ­ are themselves curved (when viewed from above). ¬ has a
radius of curvature of 1.91 cm (0.75”), and ­ has a radius of 3.2 cm (1.26”).

11



���

2

1

0.505”

2.7”

0.5”

1.5”

2.32”

2.51”
0.5”

5.04”

0.5”

45°

(b)

Figure 2.1: (a) Schematic of the para-H2 converter with and without the vacuum shroud installed.
(b) The approximate dimensions of the stainless tubing.
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Figure 2.2: Coil section where the catalytic conversion from ortho-H2 to para-H2 takes place.

There is no contact between the stainless steel tubing and any surface of the cryostat, except at one
point where the input tubing is thermally shorted to the first stage of the cold head to allow the
inflowing hydrogen gas to begin cooling before it reaches the coil.

The coil itself is a solid piece of oxygen free high conductivity copper (OFHC) around which 3.18
mm (1/8 inch) copper tubing has been wound (Figure 2.2). The input to the coil reactor is at the
top end of the device (see Figure 2.2). The copper tubing winds downwards around the OFHC, and
passes through the center adjacent to the cold head before attaching to the outgoing 1.59 mm (1/16
inch) stainless steel tubing. The solid piece was machined with a single groove, one copper tubing
outer diameter (OD) in width and one-half OD in depth, that winds continuously around the plug
from top to bottom just above the base. This groove allows the copper tubing to be recessed into the
OFHC. The coiled tubing, which makes approximately 14 loops around the OFHC core, provides
approximately 1.3 m of path length. After the tubing was wound, it was permanently attached to
the OFHC using soft solder.

The tubing was filled with 3.3 grams of a ferric (III) hydroxide (C-Chem Ionex-type O/P) cat-
alyst. The catalyst was fed into the tubing with a glass eyedropper followed by slowly tapping and
rotating the assembly in order to pack the entire length. A thin ramrod (paperclip) and blasts of
gaseous N2 were also used to aid in filling. The mass of the catalyst was closely tracked in order
to determine if the tube was completely full, or if a blockage occurred that would prevent complete
filling. The catalyst was held in the tubing by a small disc cut from porous 60-mesh stainless steel
filter material (Small Parts, Inc. F060X-12-10 Type 304). After filling, another disc was positioned
at the opposite end of the tube to prevent the catalyst from spilling out. The discs were set inside
the tube then crimped into place.

The introduction of catalyst after soldering the tube/OFHC assembly together, as well as the
crimping of the filter discs into the 3.18 mm (1/8 inch) copper tubing, was necessary in order to
avoid exposing the catalyst to temperatures in excess of 200 ◦C. After packing the catalyst and
installing the filter discs, the ends of the copper tubing were soldered to the aforementioned input
and output 1.59 mm (1/16 inch) stainless steel tubing before installation in the cryostat.
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Before its first use, the coil was wrapped with a resistive heating band and heated under vacuum
to 105 ◦C for 48 hours (hot enough to activate the catalyst without destroying it). The activation
was necessary to remove molecules such as water that had adsorbed to the catalyst surface when
it was exposed to air. If not removed, these impurities would reduce the surface area available for
hydrogen adsorption. This process could also be carried out under the constant flow of H2 gas to
increase efficiency. During heating, the coil section was pulled and suspended 2 cm away from the
cold head of the cryostat using wires, and the two were further thermally isolated from one another
using alumina felt. This was done to protect the cold head, which had a temperature damage
threshold of ∼ 50 ◦C. It is important to note that the catalyst in the coil section should be kept
under vacuum after this step.

After cooling, the coil section was attached to the cold head by capscrews, with a thin ‘wiping’ of
vacuum grease (Apiezon N) between. The temperature of the cold head is monitored using a silicon
diode sensor that is connected to a temperature controller (Lakeshore DRC-91C).

Stainless steel tubing with an outer diameter of 6.35 mm (1/4 inch) routes the gas into or around
the cryostat. This tubing consists of type-300 austenitic (non-magnetic) steel. Stopcock valves
(Swagelok SS-42GS4) are used to direct the flow of normal hydrogen upstream of the converter, and
to direct the outflow of converted gas. A high purity stainless pressure regulator with a 7.9 bar (100
psig) gauge (Matheson Tri Gas 3433-NV-5, M63-2216) controls the backing pressure of hydrogen
into the converter, and an identical pressure gauge is positioned downstream of the cryostat in order
to monitor the pressure of converted para-H2.

2.2.1 Generating para-H2

To produce highly enriched para-H2, the temperature controller was set to 13.9 K, which corresponds
thermodynamically to 99.996% para-H2. The cryostat typically took 1 hour to cool down to this
temperature, followed by another hour to allow thermal equilibration across the entire coil. Another
option, not employed in this converter, would be to attach temperature sensors at both ends of the
coil section, allowing the operator to constantly monitor the temperature extremes of the coil. Once
the cooling period was over, H2 was slowly introduced into the converter using a backing pressure
of ∼330 mbar. As the H2 entered the coil it underwent a phase change to liquid. Until the entire
coil was filled with liquid, a process taking up to 30 minutes, the downstream pressure would not
increase above the vapor pressure of H2 at low temperature (∼100 mbar). H2 was not allowed to flow
into the storage tank during the phase change. Once the phase change was complete (indicated by
pressure equilibration on both the upstream and downstream pressure gauges), gas was allowed to
flow through the converter for a few minutes (approximately a standard liter in this case) to ensure
the line had been purged of any gas that did not have sufficient time to completely equilibrate. This
gas was then evacuated.

Once these preparatory steps were completed, the para-H2 was produced by increasing the up-
stream pressure, while monitoring the voltage applied to the cryostat’s heater element. The pressure
was increased incrementally so that the difference between upstream and downstream pressures was
∼1 bar. The difference between these pressures had to be increased for higher downstream pressures.
For example, at 2.4 bar (20 psig) downstream, the pressure difference was set to greater than 2 bar
to maintain a high flow rate. This value seemed to change from day to day. The heater element
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Type para-H2 back conversion

Stainless Steel, Teflon-lined 1.7±0.4% per week
Aluminum, Unlined 1.9±0.7% per week
Glass NMR Tube (with TMS) 0.8±0.1% per hour
Glass NMR Tube (without TMS) 0.4±0.2% per hour

Table 2.1: The back conversion of para-H2 in various storage vessels as measured by thermal con-
ductance and NMR.

voltage was used to monitor the thermal load on the converter caused by the introduction of warm
H2 gas. If the voltage approached zero, then the H2 flow rate was too high. It was essential to
maintain a constant coil temperature during the conversion process because a ≥ 0.2 K temperature
excursion could result in a 0.01% change in the para-H2 enrichment.

The heater voltage and pressure also served to indicate a blockage due to frozen air, which
could result from leaks upstream of the converter. If the upstream pressure was higher than the
downstream (with no sign of change), and there was no change from the baseline voltage on the
temperature controller, then a blockage had occurred and the entire system had to be warmed to
between 95-100K in order to evacuate the offending materials (oxygen and nitrogen).

The converter was typically used to fill a teflon-lined storage vessel to ∼7.6 bar (95 psig). One
could also provide a continuous gas feed to an experiment by using a unidirectional valve to prevent
back-flow into the converter. A 99.99% pure para-H2 sample was routinely produced at rates of up
to 0.34 SLM for pressures below 1 bar, and at lower rates for higher downstream pressures. This
was a threefold increase in production rate over other converters reported in the literature.

2.2.2 Storage

To minimize back conversion due to contact with paramagnetic materials, the prepared para-H2 gas
was stored in a 3.79 L (1 gallon), 124 bar (1800 psi), teflon-lined sample cylinder (Swagelok 304L-
HDF4-1GALC-T). The ends of the cylinder were sealed with a brass valve and end cap (Swagelok
B-14DKM4-S4-A and B-4-P). The rate of back conversion in the sample cylinder was 1.7% per week
(see Table 2.1 for other back conversion rates), and was most likely due to small sections of exposed
stainless steel threading near the brass fittings. The starting sample enrichment was 99.99% para
for the first two entries in Table 2.1.

The conversion rate seemed to increase with the introduction of impurities into the storage
vessel. As an added precaution, the entire system was evacuated by a turbomolecular pump (Pfeiffer
TSH 071E) for 24-48 hours before a new sample of para-H2 was produced. A high rate of back
conversion was observed in the glass NMR tubes when tetramethylsilane (TMS) was used as an NMR
reference standard. The paramagnetic O2 molecule was the likely culprit. As described earlier, spin
catalysis brought about by collisions with O2 permit the mixing of H2 triplet and singlet nuclear
spin states [49]. The O2 was probably introduced as the TMS was being prepared to flow into the
NMR sample tubes. Two freeze-pump-thaw cycles were used for the preparation, however, there
were probably small pockets of ambient laboratory air that remained in the solid TMS.
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2.3 Quantifying the enrichment

There are many methods one can use to measure the enrichment of para-H2. Two in particular were
used in this work: thermal conductance and nuclear magnetic resonance.

2.3.1 Thermal conductance

The thermal conductance method takes advantage of the different thermal conductivities of ortho-
and para-H2 at low temperatures. This stems from the different temperature dependencies of the
rotational partition functions, which are in turn due to the fact that para-H2 consists only of even
rotational states and ortho-H2 of odd rotational states. The difference in thermal conductivity of
the two spin modifications is greatest at a temperature of ∼175 K, and consequently this method
has the highest precision near this temperature.

A wire inside a liquid nitrogen-cooled cell is immersed in a sample of hydrogen gas and held close
to 175 K by resistive heating. The resistance of the wire will change with temperature according to
Eq. (2.1).

R = Ro(1 + α∆T) (2.1)

Ro is the resistance of the filament at a known temperature (usually close to 300K), α is its thermal
resistance coefficient (4.9 × 10−3 K−1 for tungsten), and ∆T is the temperature change [67, pg.
114]. The higher thermal conductivity of para-H2 will result in a cooler wire, which in turn will
have a lower resistance (and voltage) at a given current. This method is the easiest to use for quick
measurements such as spot checks of the products from the converter, or to measure the enrichment
of a sample prepared at some time in the past.

The design of glass thermal conductance measurement cells is thoroughly discussed by Farkas
[68, pg. 20-28] and by Stewart [69]. Our cell is an improvement on their designs because of its
construction from stainless steel flanges and nipples. This makes for easier access to the filament in
case it needs replacing, and circumvents the need for glassware altogether (see Figure 2.3).

The top part of the cell (a) was a 3.81 cm (1.5 inch) long stainless conflat half-nipple with a 3.38
cm (1.33 inch) flange diameter (Kurt Lesker Inc. HN-0133). To this, a 3.38 cm (1.33 inch) flange
(b) with two nickel feedthroughs (Kurt Lesker Inc. EFT0021032) was tightened with a seal provided
by a copper gasket. Another 3.38 cm (1.33 inch) flange (c) was welded on the other end, again with
two nickel feedthroughs. The two sets of feedthroughs were connected by insulated copper wires (d),
and a 3.18 mm (1/8 inch) diameter stainless tube (e) was welded to a hole drilled mid-way up the
side of the nipple in order to allow its interior to be evacuated.

A separate custom 20.32 cm (8 inch) long half-nipple (f) (Kurt Lesker Inc. HN-C111080) was
modified by welding an end cap to the end without a flange, and attaching 3.18 mm (1/8 inch)
tubing through which the cell could be evacuated, or the test-gas could be introduced (g). The two
nickel feedthroughs protruded into the space provided by this nipple. A ∼2.5 cm strand of 12 µm
tungsten wire (h) was spot welded between these nickel feedthroughs. Part-way up the feeder tube
(g) was a small welded cylinder (i). This cylinder could also be evacuated (e). In conjunction with
the nipple described in the previous paragraph (a), the purpose of this cylinder was to act as a dewar
to isolate the test gas from changing cryogen levels which could cause unwanted convection currents.

When making a measurement, the cell was immersed nearly to the top of the small cylinder (i)
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Figure 2.3: The thermal conductance cell.

in liquid nitrogen. A pressure of 50.05 mbar of hydrogen, measured by a capacitance pressure sensor
(Keller America PAA-41X/81955.60/ 10mbar), was introduced via a bellows seal valve (Swagelok
SS-4BRG). When the cell was filled to this pressure, a 105 mA current was applied using a current
meter (Keithley 2420). This current will heat the tungsten filament to ∼185 K in a sample of normal
H2 gas. The system was allowed to thermally stabilize for 5 minutes from the application of current,
after which the voltage (or resistance) was read from the current meter. Although it was not difficult
to consistently fill the cell to 50.05 mbar, the precision of the pressure measurement was important
because an average pressure dependence of -0.78 mV/mbar was observed. The error of the pressure
sensor (0.1% typical) resulted in an error of 0.05 mV. It was also important that gas was present
in the cell when current was applied in order to provide a means of heat dissipation, otherwise the
wire would need to be replaced or re-calibrated (an experience which highlights the benefits of the
flange/nipple design).

The thermal conductance cell was calibrated using gases of known para-H2 enrichment. Para-H2

was produced at different converter temperature settings, and it was assumed that the enrichment
matched thermodynamic predictions. Figure 2.4 presents the typical results of a calibration. Du-
plicate measurements using samples of the same para-H2 enrichment typically fell within ±0.5 mV
of each other. The calibration slope was 0.75 mV percent−1 at low para-H2 enrichment and 0.65
mV percent−1 at high. This resulted in a precision of ±0.7% and ±0.8%, respectively. It should be
noted that this level of precision was determined from measurements taken over a period of 6 months.
Measurements taken within a short time of each other were usually within ±0.3% for both the high
and low enrichment regimes, which is comparable to the precision found by Assael and co-workers
when using the transient hot wire method [70].
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Figure 2.4: A calibration curve for the thermal conductance cell.

2.3.2 Nuclear magnetic resonance

Nuclear magnetic resonance is a method for measuring the enrichment of para-H2 that is readily
available to most laboratories given the ubiquity of NMR spectrometers. Ortho-H2 possesses a net
magnetic dipole that responds coherently in a strong magnetic field and when interacting with an
electromagnetic pulse. This makes it possible to observe an ortho-H2 free induction decay (FID)
in NMR. The integrated area of the Fourier transformed FID is dependent on the number density
in the sample [71]. In contrast, para-H2 has no net magnetic moment and cannot be aligned in a
strong magnetic field, and therefore produces no spectral signature (FID). Consequently, the para-
H2 enrichment can be calculated by comparing the integrated peak of an unknown sample with that
of a known sample, such as normal-H2 with ortho:para = 3:1.

Gas NMR tubes (Wilmad Lab Glass 528-PV-7) fitted with J. Young valves were used to take
the measurements. It was important to ensure a good seal to these tubes when filling, otherwise
the introduction of oxygen resulted in a higher back-conversion rate to ortho-H2. A tube with
the unknown para enrichment was filled with 2.4-3.8 bar (20-40 psig) of the test gas, and another
tube of normal H2 (ortho:para = 3:1) was prepared at the same pressure. The use of normal H2

makes it unnecessary to calibrate the spectrometer by means of an outside source, as was required
for the thermal conductance cell. However, we did compare the NMR results with those of the
thermal conductance cell, and temperature-based predictions, in order to determine the validity of
this assumption.

In addition to the hydrogen, approximately ∼500 mbar (7.5 psi) of spectroscopic-grade tetram-
ethyl silane (TMS, Si(CH3)4) was introduced into the sample tubes to serve as a reference standard.
The TMS was added at room temperature from a glass ampule. To minimize the ambient air intro-
duced along with the TMS, two freeze-pump-thaw cycles were performed by immersing the ampule
in a liquid nitrogen bath. At 500 mbar, there was a small amount of liquid TMS at the bottom
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Figure 2.5: Comparison of thermal conductance and NMR measurements made with TMS. Error
bars for the thermal conductance measurements are displayed, and are ± 0.8%.

of the NMR tube. It was assumed that this liquid would provide the same vapor pressure of TMS
at a given temperature inside the NMR spectrometer, thereby providing a good reference between
samples.

Measurements were taken as quickly as possible after the sample tubes were prepared (within
10 minutes) in a Varian Unity Inova 500 Narrow Bore NMR spectrometer. Minimizing the time
between sample preparation and measurement was important because of the high rate of back
conversion in the NMR tubes (see Table 2.1). The integrated peak areas were compared between
the unknown and known samples to determine the amount of ortho-H2 in the unknown. The TMS
peaks were used to normalize the hydrogen peaks in case there were differences introduced by the
sample tubes themselves, or by changing conditions in the spectrometer. Standardization using
this TMS technique typically gave values within ±0.1% of the unstandardized data. On only one
occasion did the use of TMS provide a significant correction. Aside from its standardization role,
TMS also provided a signal strong enough to shim the NMR spectrometer magnets.

As seen in Table 2.1, the rate of back conversion to ortho-H2 was higher in sample tubes prepared
with TMS than without. This was probably due to the limited effectiveness of the freeze-pump-
thaw cycle in removing oxygen. A comparison of measurements taken with NMR (using TMS)
and the thermal conductance cell is presented in Figure 2.5. The NMR-measured para-H2 fractions
were consistently lower than those measured by thermal conductance (again, it was assumed in
the thermal conductance calibration that the converter produced para-H2 at enrichments consistent
with thermodynamic predictions). This was attributed to two factors; the aforementioned back
conversion rate in TMS-infused sample tubes, and the distortion effects of the TMS resonance on
the spectrum. In the latter case, the errors could arise from distortion in the nearby ortho-H2 peak
which was difficult to remove by phasing.
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Figure 2.6: Difference between NMR measurements without TMS and the predicted values of para-
H2 enrichment. Error bars represent 1σ.

These results were compared with NMR measurements taken without TMS, which are presented
in Figure 2.6. In stark contrast, these measurements were consistently higher than the thermo-
dynamically predicted para-H2 enrichment, but by approximately the same amount (∼1%). At
the highest enrichment, the measurement without TMS was lower than expected (99.95% versus
99.99%), but this could be explained by the 0.4% hour−1 back conversion rate observed even in
TMS-free sample tubes (Table 2.1). Both the accuracy and precision were lower at reduced para-H2

enrichments (< 95%). This could be partially attributed to the fractional nature of the errors. In
other words, a 10% error in the measurement of a small ortho-H2 peak at 99.9% enrichment was
not as significant as the effect of the same error in a 25% para-H2 sample. The consistent sign of
the offsets in both techniques indicated some sort of systematic error that is not well understood
at present. It should be mentioned that there was also an error due to the limited precision of
the pressure gauge used on the converter, which could only be read to ±35 mbar (±0.5 psi). The
resulting error was on the order of ±0.02%, which was unlikely to be a factor even at high para
enrichments.

Considering the steps necessary in carrying out the actual measurement, combined with the
relative similarity in accuracy and precision, performing NMR measurements without TMS was the
better option. Based on limited data, this method demonstrated a precision of ±0.1% for > 95%
para-H2, and ±1.0% below this enrichment. The accuracy was ∼0.5% for enrichments > 95%, and
∼2.5% at lower enrichments.

Both the thermal conductance and NMR techniques are ideal for relatively simple and quick
measurements of para-H2 enrichment. The strength of the thermal conductance technique is in
the ease of construction, however, it is only as accurate as the method used for calibration. The
advantage of the NMR technique is its availability and the fact that no external calibration is needed.
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Chapter 3

Laser systems and spectroscopic
methods

Although the types of experiments performed in this work sometimes involved techniques other than
laser spectroscopy, each experiment depended on the use of lasers in some fashion. The lasers that
were used ranged from helium neon at one end of the complexity spectrum, to systems such as
the two locally-built difference frequency lasers on the other. This chapter will focus on the two
difference frequency lasers, and will describe the two spectroscopic techniques in which one of them
was used; continuous wave cavity ringdown and multipass absorption spectroscopy.

3.1 Difference frequency generation system I

Difference frequency generation (DFG) is a process in which beams of light at different frequencies
are combined in a material possessing nonlinear optical properties. As the name implies, the output
frequency that results from the interaction between light and matter is at the difference between the
two input frequencies. The two input beams and the output beam are referred to (respectively) as
the ‘pump,’ ‘signal,’ and ‘idler,’ where ωidler < ωsignal < ωpump. The first DFG system constructed
in our laboratory, shown in Figure 3.1, consists of a tunable titanium sapphire (Ti:Sapph) ring laser
and a single-frequency neodymium yttrium aluminum garnet (Nd:YAG) laser, the beams of which
are combined in a periodically poled lithium niobate (PPLN) nonlinear crystal. This system was
used for characterizing the ion source used in the dissociative recombination experiment as well as
for the H+

3 +H2 reaction dynamics experiments in the pulsed supersonic expansion and the hollow
cathode cell. These components, along with essential sub-components, are discussed below.

3.1.1 Titanium:sapphire pump laser

The Ti:Sapph laser, which serves as the pump laser for this DFG, actually consists of three lasers:
a diode laser that is used to pump a neodimium vanadate laser, which in turn pumps the Ti:Sapph.
The diode laser (Spectra Physics) uses semiconductor material that has spatially separated electron
donor (n-type) and electron acceptor (p-type) regions. When negative and positive voltages are
applied to the regions, respectively, electrons are driven (forward biased) into the junction between
them. The recombination of electrons with acceptors is the equivalent of electron transitions from
conduction to valence bands, and photons are released in the process. Continuously pumping current
through this region provides population inversion, and the material is shaped in such a way as to
form a cavity in which reflected photons can stimulate further emission. This diode laser is composed
of gallium aluminum arsenide semiconductor material that emits at 809 nm [72, pg. 312-318].
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Figure 3.1: DFG System I (drawn by N. Tom).

The diode output is used to pump a Spectra Physics Millenia neodymium-doped yttrium ortho-
vanadate solid state laser (Nd:YVO4, also referred to as ‘neodymium yttrium vanadate’). In the
yttrium vanadate lasing medium, the Nd3+ ions are pumped from their ground state to an excited
band from which they quickly and nonradiatively relax to the 4F3/2 electronic state before fluorescing
to the 4I11/2 state [73,74]. It is interesting to note that the benefits of Nd:YVO4 as a lasing medium
have been known since the 1960’s, however, the technology to grow optical-quality crystals and the
need for single line pumping (provided by diode lasers) were not realized until years later. One of the
benefits of using the vanadate oxide host is output lines that are not multi-peaked, a consequence
of reduced Stark splitting in VO4 as compared to the splitting found in yttrium-aluminum-garnet
host crystals [75].

The resultant 1064 nm emission from the Nd:YVO4 is frequency doubled by a second harmonic
generating (SHG) crystal, the first of two nonlinear optic components in this difference frequency
laser. The crystal is made of lithium triborate (LiB3O5), also abbreviated LBO. When consider-
ing the interaction between electromagnetic radiation and matter the parameter of interest is the
intensity of the induced polarization in the matter, which is expressed by elements of the electric
susceptibility tensor (χ(2)). In addition to the electric susceptibility, the properties that govern the
SHG power output include frequency, crystal length, beam area, and the phase mismatch condition
(∆k). The mismatch condition expresses how well the induced polarization and the electromagnetic
waves can remain in-phase, with higher efficiency resulting when there is no mismatch, ∆k = 0. In a
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given system with a constant frequency, the SHG power (P2ω) is proportional to the phase mismatch

P2ω

Pω
∝ sin∆k

∆k
, (3.1)

which is a sinc function that approaches 1 as ∆k approaches 0. The mismatch condition has an index
of refraction dependence ∆k ∝ n1 − n2, and can best be minimized with the use of birefringent
materials. One can control the indices (to a small degree) by the choice of alignment angles in a
material, and this is known as critical phase matching. It is also possible to tune the temperature
of the birefringent crystal in order to precisely control the index matching, a process known as non-
critical phase matching [72, pg. 582-596]. The LBO in this system employs the latter technique.
It was sometimes necessary to manually re-optimize the temperature of the crystal, as indicated by
fluctuating power from the Nd:YVO4 laser.

The 532 nm output beam goes on to pump the Ti:Sapph laser (Sirah Matisse TS), a four-level
solid state laser tunable over the range 700-990 nm. For titanium doped in sapphire, there is a
coupling between the crystal field and electronic states of the ion that makes vibrational manifolds
available. This coupling with phonon transitions provides a continuum of lasing wavelengths. The
levels consist of two excited states, eg, and three ground states, tg. The symbols are derived from the
Mulliken notation for irreducible representations, where the e representations imply a degeneracy of
2, the t representations imply a degeneracy of 3, and the ‘g’ represents ‘gerade’ or ‘even,’ referring to
the character of the representation with respect to inversion through a molecule’s center of symmetry
(in this case Ti2O3). The upper levels are split by Jahn-Teller distortions that are caused by the
crystal field, as are two of the lower states.

More specifically, the lasing medium consists of a sapphire host (Al2O3) which has been doped
with Ti3+ ions (0.1% Ti2O3 by weight). The Ti3+ ions possess a single valence electron (3d1) that
is available for vibronic excitation into the band of vibrational levels which make up the higher
of the two upper levels, eg (this is another advantage of this four-level system; that it is widely
‘pumpable’). The electron quickly and nonradiatively relaxes into the lower of the two upper levels,
where the majority of the population resides due to the fluorescence lifetime of this level (∼ 3.2µsec).
Lasing occurs when these electrons relax to the higher of the ground states (tg), followed by a quick
relaxation to the lower ground state, from which the cycle can begin anew [76].

Figure 3.2 is a diagram of the interior ring arrangement of the Ti:Sapph laser. The 532 nm pump
beam enters from the right, and is aligned using the pump mirrors (PM 1 and PM 2) so that it passes
centered through the two focusing/folding mirrors (FM 1 and FM 2) and the Ti:Sapph crystal. The
fluorescence beam is then reflected off of M4 which is controlled by a slow piezo, through the thick
etalon and TGG to the tweeter mirror M3, which is controlled by a fast piezo. The TGG isolator, so
named because the beam passes through a window of terbium-gallium-garnet situated between two
strong magnets, rotates the polarization of both counterpropagating beams. This works in concert
with mirror M2 which also changes the polarization of the light because it is positioned slightly out
of plane with the other mirrors. The out of plane mirror induces a polarization change that only
‘corrects’ the counterclockwise beam.

The birefringent filter (BiFi) serves to select a several hundred GHz-wide range over which lasing
modes will occur in the cavity. It does so by adjusting three birefringent plates that are oriented in
such a way as to increase reflective losses of s-polarized light in undesired wavelengths. A thin etalon
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Figure 3.2: The ring arrangement of the titanium sapphire laser (adapted from [77, pg. 33]).

is used to further narrow the tuning of the laser. It has a free spectral range of ∼250 GHz, and is
positioned by a piezo controller so that it supresses all but a narrow range of frequencies in the laser
cavity. The thin etalon has a relatively low finesse, which means that the range of frequencies that
are allowed to pass are broader than if the finesse was high. A photo diode monitors the light being
passed through the thin etalon, and a control loop generates an error signal to keep the intensity
of this light constant with respect to the overall output intensity of the laser. A thick etalon with
a free spectral range of 20 GHz is formed by two prisms that have an air gap between, the size of
which is controlled by another piezoelectric actuator. The spacing between the prisms is controlled
to select only one mode within the cavity [77, pg. 33-35]. Approximately 1-2 Watts pass through
the output coupler (M1). An external reference cell incorporating a Fabry-Perot cavity is used to
lock the laser to a specific frequency (within 1 MHz) by sending error signals to the laser cavity that
control the fast and slow piezo-actuated mirrors, M3 and M4.

Three sets of interchangeable optics (MOS 1-3) make the laser tunable over 700-990 nm. The
various actuators in the cavity are controlled by a Sirah-generated application called ‘Matisse Com-
mander.’ This program allows the operator to tune the laser by selecting BiFi and thin etalon
positions, as well as by tuning the thick etalon in selectable voltage increments (∼107 GHz/volt).

3.1.2 Nd:YAG signal laser

The signal laser in this DFG is an Innolight Mephisto 1000NE Nd:YAG. The laser is diode-pumped,
and the medium consists of a Y3Al5O12 crystal in which 1% of the Y3+ have been replaced with
Nd3+ ions. The Nd3+ ions are excited to the pump band by 810 nm light from an internal diode
laser. They subsequently de-excite to the 4F3/2 level. The 1064 nm fluorescence occurs in the
transition 4F3/2 →4I11/2. Rapid nonradiative de-excitation occurs to the 4I9/2 ground state, making
the Nd:YAG a four-level system like the Ti:Sapph and Nd:YVO4 [72, pg. 48-52]. The laser can
output up to 1 W with a 1 kHz linewidth (per 100 ms), however, the current was typically set to
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∼2.2 A, which correlated with a ∼600 mW output.

3.1.3 Additional DFG components

Both the Ti:Sapph and Nd:YAG beam paths have additional components that isolate the lasers,
focus, polarize, and combine the beams. After the Ti:Sapph reference cell, the beam passes through
an isolator that contains a Faraday rotator and polarizers that effectively prevent the passage of
a returning beam. This is done so that a reflected beam will not interfere in the Ti:Sapph ring
laser cavity. Cavity ringdown setups involve very precise alignment of back reflections, and beams
returning to and interfering with the laser source must be eliminated. After the isolator, the beam
proceeds through a zero-order half-wave plate that is used to change the beam’s polarization from
horizontal to vertical. A typical half-wave plate works because the birefringent material in the plate
is cut so that its optical axis (the ‘fast’ axis) is oriented parallel to the faces of the crystal, and the
thickness of the plate is equal to nλ/2. In linearly polarized light where the electric and magnetic
fields propagate with phase difference ∆φ = 0, 180◦, the half wave plate slows one of the propagating
fields for a distance nλ/2, thereby shifting its phase by 180 ◦. If the half-wave plate is oriented so
that the fast axis is 45 ◦ to the polarization of the incident beam, the polarization of the outgoing
beam will be orthogonal to that of the incident beam. A zero-order half-wave plate is constructed
so that it will work over a range of wavelengths.

The Nd:YAG laser beam passes through quarter and half-wave plates before entering an acousto-
optic modulator (AOM). The quarter-wave plate is constructed similarly to the half-wave plate,
however the thickness is equivalent to a multiple of nλ/4. Instead of rotating the axis of polarization
by retarding one of the electromagnetic components by ∆φ = 180◦, the quarter-wave plate will shift
the relative phase difference by 90◦, thereby changing elliptically polarized light (which the Nd:YAG
is) to linearly polarized light. The half-wave plate is then used to rotate the polarization to the
vertical.

The AOM (Brimrose TEM-85-2-1064), or a system of equivalent functionality, is an essential
component of a laser system used for cavity ringdown. Its purpose is to deflect a beam from one
direction of travel to another within tenths of a microsecond so that the light can be decoupled
from the cavity to allow a ringdown event to take place. A driver box provides an 85 MHz signal
to a transducer that drives sound waves in the AOM material. The sound waves cause variations
in the index of refraction. Light impinging on these index fluctuations will be Brillouin scattered
into one of many different beams, each Doppler shifted by the frequency of the sound wave in the
material [78, pg. 6]. When a negative voltage TTL is sent to the driver box, the transducer stops
vibrating for a length of time equal to the width of the TTL, the scattering ceases, and the entire
beam returns to the undeflected, zeroth-order path. In this setup, when a ringdown is detected by
a home built comparator box (circuit diagram, Figure D.1), the comparator sends a TTL pulse to
the AOM driver which stops the Nd:YAG beam from going into the crystal, effectively extinguishing
the mid-IR light.

The Ti:Sapph and Nd:YAG beams are made co-linear starting at a dichroic beam combiner that
is highly reflective in the 1064 nm range, but transmits at shorter wavelengths. One flaw in our
implementation of this was the fact that the substrate for the dichroic was not a highly polished
optical material, nor was it antireflective coated for the shorter wavelengths. A future upgrade
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would seek a custom optic that is both highly reflective at 1064 nm and more highly transmissive
for shorter wavelengths.

After the dichroic, both beams pass through a Glan polarizing prism. The purpose of the Glan
prism is to filter the polarized light such that almost all of the undesired polarization is removed.
This optic consists of two prisms with a narrow gap of air in between. The input and output sides
of the prisms are normal to the incident and exiting light. The plane of the prisms at the point
they come together is at an angle that is optimized to internally reflect s-polarized light. The beam
that enters the air gap between the prisms is almost exclusively polarized in one direction, which is
vertical in this setup. The purpose of the second prism is to refract the beam back to a path that
is parallel to its original path (before it was refracted by the angled surface of the first prism).

The final optic before the nonlinear crystal (discussed in §3.1.4) is a 20 cm achromatic doublet
lens. The purpose of this lens is to focus the beams into the nonlinear crystal while minimizing
chromatic aberration. Both beams are focused to a 140 µm diameter waist with a Rayleigh range
that is approximately 1/3 the length of the crystal. This is a rule of thumb that if followed will
ensure that the beam does not become too large before exiting the crystal. Reducing the chromatic
aberration ensures that the two beams of differing wavelength will focus in roughly the same location,
a point just inside the leading edge of the crystal. This is accomplished by the dispersive properties of
the doublet, which is made of two materials possessing dispersions that counterbalance one another.

3.1.4 The LiNbO3 nonlinear crystal

Difference frequency generation combines two beams such that ωpump − ωsignal = ωidler. In this
system, the Ti:Sapph served as the pump laser and the Nd:YAG as the signal. As mentioned in
§3.1.1, matching the phases is important for optimizing conversion efficiency in nonlinear processes.
This is all the more challenging when ωpump 6= ωsignal. The first DFG was built by Pine, who
observed an output power of ∼ 500 nW [79]. This early system generated a modicum of power
because of the destructive interference that can take place at the coherence length of the beams,
lcoherence = π/∆k if ∆k 6= 0 [80] [81, pg. 97-140]. Recall that ∆k, the phase mismatch, is a measure
of the phase difference between the electromagnetic waves, ∆k = kpump − ksignal − kidler. It can
also be considered the degree to which momentum is not conserved in the mixing of the beams.
The further the light propagates past the coherence length, the more of the difference generated
light (ωidler) is destroyed, as depicted in Figure 3.3. This cycle is repeated every even multiple of
lcoherence, making it necessary in such systems to use nonlinear crystals that are an odd multiple of
the coherence length.

This limitation can be overcome by using a periodically poled crystal. In such a crystal, the
polarization axis of the nonlinear material is inverted after every coherence length. This has the
effect of changing the sign of the nonlinear coefficient in the electric susceptibility tensor, χ(2),
which in turn will cause constructive interference as the light propagates through the crystal. This
is referred to as quasi-phase matching. It is not nearly as efficient as a birefringent phase-matched
system (∆k = 0) such as in SHG, but a significant intensity of light at the difference frequency is
generated nonetheless. These polarization directions are normal to the upper and lower surfaces of
the crystal, and this necessitates the vertical polarization of the incoming light as is provided by the
Glan laser prism. Others have used this technique to build systems similar [82], or almost identical to
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Figure 3.3: Phase matching in a non-linear crystal (adapted from [81, Fig. 11]).

this one [83, 84]. In these and the current system, the periodically polled crystal was manufactured
from lithium niobate (LiNbO3; Stratophase DFG2-40). The crystal has an antireflection coating
covering 700-1064 nm wavelengths. The combination of pump and signal wavelengths, along with
the poling periods of the nonlinear crystal, make this DFG capable of generating light from 2.8-4.8
µm.

The equation that governs the power output of a DFG is [81, pg 118]

Power =
2ω2

idler

c3ε◦npumpnsignalnidler

(
2d33

mπ

)2

L2PpumpPsignal
1
A

(3.2)

where c is the speed of light, ε◦ is permittivity of free space, n are the indices of refraction, d33 is
the effective nonlinear coefficient from the electric susceptibility tensor, m is the order of the quasi
phase matching (the odd multiple of coherence lengths after which polarization is switched), L is the
interaction length (the length of the crystal), P are the pump and signal powers, and A is the area
of the overlapped beams. The crystal used in this work is 4 cm long, with 13 channels, each with
a different poling period enabling wider tunability. Each channel has a 0.5×0.5 mm cross section.
Matching the pump and signal beam profiles is also important as can be seen by the term A in
equation (3.2).

The poling period and indices of refraction are established in the design of a given crystal and
by the material from which it is manufactured. However, they can be optimized by controlling
the temperature of the crystal because both the index of refraction and the poling period have a
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temperature dependence (in the latter, the crystal expands along the axis of beam propagation with
higher temperature). This can be achieved by minimizing the equation

∆k = 2π

(
npump

λpump
− nsignal

λsignal
− nidler

λidler
− 1

Λ

)
(3.3)

where the λ are the respective wavelengths and Λ is the poling period. Minimizing equation 3.3 is
accomplished by solving the Sellmeier equations for a given system [85]. The crystal temperature is
adjusted using an oven (Thorlabs OV40) and oven controller (Thorlabs TC200).

In each of the DFG lasers described in [82–84], output power was typically on the order of tens
of µW when using pump and signal powers from hundreds of mW to 1-2 Watt. Our system achieved
an idler output ranging from 450-700 µW using Ppump = 1.6 W and Psignal = 550 mW. Using
higher pump and signal power will result in higher idler power, however, with higher pump power
there is a potential increase in the efficiency of optical parametric generation and optical parametric
amplification effects [81, pg. 113]. Both can increase the idler linewidth, a problem which should be
investigated before this DFG is used for even higher-resolution spectroscopy.

3.1.5 Mid-IR light path after the conversion

After the mid-IR is generated in the nonlinear crystal, a longpass filter deflects the high powered
pump and signal beams into a beam dump. We attempted to use germanium and AR coated silicon
windows, however, in both cases the heating of the windows increased their opacity to mid-IR light.

After the beam dump, four CaF2 lenses are positioned in order to focus the beam as required
for the various spectroscopic methods that were employed. In addition, a BaF2 window or a ZnSe
neutral density filter (attenuation = 0.15) were used (at different times) to deflect the beam into a
Michelson interferometer (Bristol 621A) for precise wavelength measurement.

3.2 Difference frequency generation system II

The second DFG uses an Nd:YVO4 laser and a dye laser as its pump and signal, respectively. The
wavelengths of these lasers are very different from those of DFG system I, as are the specifications
of the nonlinear crystal. These differences are highlighted below. This DFG system was not used
in any of the measurements described in this work, however, the DFG components (excluding the
pump and signal lasers) were researched and acquired by the author, and so are discussed here. The
general layout for the DFG system is found in Figure 3.4. This DFG was assembled by K. Crabtree
and C. Kauffman, and at the time of writing has produced its first mid-IR light.

3.2.1 Nd:YVO4 pump laser

The physics of the Nd:YVO4 laser (a Coherent Verdi V10) are as described in §3.1.1. It is pumped
by a proprietary diode array, and is capable of 10 W total output power. A major difference between
this DFG and system I is the fact that the Nd:YVO4 is used as both the pump for the DFG process,
and as the pump for the dye laser. An 80/20 beamsplitter passes ∼7 W to pump the dye laser,
and the remaining 2-3 W is routed through the AOM (Brimrose TEM-85-2-532) and focusing BK-7
lenses before combining with the dye laser beam.
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Figure 3.4: DFG system II (drawn by N. Tom).

3.2.2 Dye signal laser

The dye laser is a Coherent 899-29, which is tunable between 375-890 nm depending on the dye and
the internal optics used. Dye lasers were the first truly tunable laser systems available. The gov-
erning phenomenon was discovered during experiments with irradiated organic and organometallic
compounds in the mid-1960s [86, pg. 1-5]. In the lasing medium (currently rhodamine 640 perchlo-
rate), a molecule is raised to an excited singlet state, from which it quickly relaxes to the lowest
vibronic level of that singlet state. Light is emitted when the molecule de-excites from the lowest
vibronic level of the singlet state down to an excited vibronic level of the ground state [86, pg. 34-35].

The dye in this system is circulated by a pump (Coherent Model 5920) which also cools the dye
to ∼4 ℃. This pump forces the dye in a planar jet that is intersected by the 532 nm pump laser
beam. The lasing cavity is established between 4 mirrors, one of which is an output coupler.

A birefringent filter narrows the bandwidth in the cavity to approximately 2 GHz, and a thin
etalon and a thick etalon are included in an intracavity assembly to further reduce the bandwidth
of the cavity to 10 MHz. An external reference cavity provides error signals to a tweeter that is
driven by a fast piezo actuator, and a rotating Brewster plate that is also motor-driven to account
for slower changes in the cavity. These active elements enable the laser to achieve a linewidth of
∼500 kHz. The laser can be scanned up to 30 GHz by rotating the Brewster plate, and by varying
the tilt of the thin etalon and the width of the thick etalon [87, pg. 2.2-2.6].

3.2.3 Additional DFG components

The beams are made co-linear at a custom dichroic beam combiner that is highly reflective at 532 nm.
Unlike in system I, the substrate for this dichroic is optical grade and its back side is antireflective
coated for the dye laser wavelengths. After combining, the vertically polarized light is filtered by a
Glan prism, and focused into the nonlinear crystal by an achromatic doublet. Both components have
been antireflective coated for the wavelengths of the dye and pump lasers. A simplifying property
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of this system is that the light from both the pump and signal lasers is vertically polarized, which
eliminates the need for waveplates.

3.2.4 The MgO-doped LiNbO3 nonlinear crystal

The processes that occur in the nonlinear crystal are similar to those described in §3.1.4 in most
respects. Differences include the poling period and antireflective coatings which are optimized for
532 nm pump and 600-720 nm signal wavelengths, which will make the idler output tunable down
to ∼ 2.2 µm. The crystal is also 5 cm long, which results in higher output power as can be seen by
inspection of equation (3.2). In addition, it was manufactured from MgO doped LiNbO3. Optical
damage to these nonlinear crystals is not uncommon given the high beam power and small waist
sizes, and many techniques have been suggested to prevent it [88]. In a doped crystal a small
amount of Mg replaces Nd which has the effect of reducing certain characteristic electromagnetic
absorptions of purely Nd-doped crystals. This increases the strength of the crystal lattice and in so
doing increases its resistance to photorefractive damage [89].

3.3 Spectroscopic methods

Two methods were used to perform the laser-based spectroscopic measurements of this study: cavity
ringdown and multipass direct absorption. The theory and implementation of each will be described
here. In the case of ringdown, additional experimental details pertaining to the different plasma
sources are provided in Chapter 4. Cavity ringdown was used to perform the spectroscopic mea-
surements required for the dissociative recombination experiments as well as the H2+H+

3 reaction
dynamics experiments (Chapters 5 and 6), and direct absorption was used solely for the reaction
dynamics experiments.

3.3.1 Continuous wave cavity ringdown spectroscopy

Cavity ringdown spectroscopy (CRDS) is a highly sensitive method for observing trace constituents
in the gas phase [90]. The ability to determine absorptive properties such as the cross section and
the number density of a material is dependent on the precision with which one can measure changes
in the intensity of light as it passes through a medium (It/I◦). This is expressed by the familiar
Beer’s law,

It = I◦e−σnL, (3.4)

in which It is the intensity of the transmitted light after passing through the medium, I◦ is the
intensity of the incident light, σ is the wavelength-dependent cross section, n is the number density
of absorbers (cm−3), and L is the path length through the absorbing medium. The high sensitivity
of CRDS is a direct result of the increased path length (L) it affords, and the fact that the technique
does not require the direct measurement of It/I◦. Each of these aspects is discussed below.

In an ideal system, light will only couple into a cavity if the space between its reflective surfaces
is an integral multiple of the light’s wavelength. Real systems, however, have a finite linewidth. The
build up and subsequent loss due to light leakage through the reflective surfaces is depicted in Figure
3.5. If a cavity is constructed with highly reflective mirrors, then the ratio of the light that stays and
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Figure 3.5: An illustration of a typical buildup/ringdown profile.

continues to reflect within the cavity to that which is lost (the quality factor ‘Q’) is high. The result
of a high Q is a beam that makes many round trips within the cavity, meaning a long pathlength
through the absorbing medium. Ideally, CRDS is performed in cavities of high Q constructed with
highly reflective mirrors. The resulting path lengths are on the order of hundreds to thousands of
meters. In this work, the mirrors possessed a 6 m radius of curvature and were 99.98% reflective at
4 µm (Los Gatos, 901-0008-4000). These mirrors actually served both to form the optical cavity,
and to seal the vacuum chamber.

The time dependence of the intensity of light stored in a cavity is related to the reflectivity of
the mirrors (R) by,

I(t) = I(0)e−(1−R) tc
L , (3.5)

where I(t) is the intensity of stored light after time t, I(0) is the intensity of light at t=0, c is the
speed of light, and L is the distance between the mirrors. The quantity tc/L represents the number
of times the light has been reflected between the mirrors, and (1−R), by Kirchhoff’s law, represents
the light that is lost to transmission with each reflection. If an absorbing species is present in the
cavity, then −σnL tc

L is added to the argument of the exponent, representing the absorption loss per
pass over tc/L passes,

It = I(0)e−
{

(1−R)+σnL
}

tc
L . (3.6)

The time constant is defined as the time it takes for I(t) to equal 1/e of I(0). This happens when
the argument of the exponent is equal to −1, which occurs when t is replaced by the time constant
τ , where,

τno sample =
L

c(1−R)
(3.7)

τwith sample =
L

c
{
(1−R) + σnL

} . (3.8)
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These equations indicate that the addition of an absorptive species will reduce the time constant,
τ . By substituting the absorption coefficient α = σn, and algebraically solving equations (3.7) and
(3.8) to eliminate R, the result is

α =
1
c

(
1

τwith sample
− 1

τno sample

)
(3.9)

So the absorption coefficient (α) of a species can be determined knowing only the time constants of
ringdown when there is sample present and when there is no sample present [91]. Thus, the need to
measure small changes in It/I◦, and any dependence on laser intensity, no longer exists.

The first implementations of CRDS used pulsed lasers. A drawback to this is the fact that the
linewidth of a pulsed laser is inherently larger than that of a CW laser. In addition, the speed
with which measurements can be taken is limited by how quickly the pulsed laser can regenerate
for subsequent pulses. A continuous wave (CW) laser, as used in our experiment, eliminates these
limitations [92]. In CW-CRDS, the cavity length is periodically changed so that it is brought in and
out of resonance with the incident light. This is accomplished by using a piezo mount that dithers
one of the cavity mirrors. In this work, the piezo (Piezomechanik HPSt 150/20-15/12 VS 35) was
dithered by a driver that was coupled to an 8 Hz sawtooth waveform. The applied signal typically
ranged between 30-60 V, and resulted in a change in cavity size that equated to approximately two
free spectral ranges.

The ringdown time constants were measured using a 500 Hz to 1 MHz bandwidth AC indium
antimonide (Infrared Associates InSb 1000) detector positioned downstream of the cavity, along with
focusing optics to collect the light ‘leaking’ from the downstream mirror. An AC detector with a fast
response time was necessary in order to properly sample the fast signal decay in the cavity. Data
were processed by a locally created ringdown data acquisition program, discussed in [93], and the
time constant was determined using an exponential curve fitting algorithm. Typically 40 ringdown
measurements were taken per data point (at each frequency step as the laser was scanned).

3.3.2 Multipass absorption spectroscopy

Direct absorption spectroscopy was also used, specifically for the reaction dynamics experiments.
Some of the dynamics experiments were originally designed to measure the time-dependent behavior
of the hydrogen spin modifications. These measurements would be difficult using cavity ringdown,
requiring a large number of ringdowns with sample in order to monitor even one of the spin mod-
ifications over a period of 200 µs. In contrast, the time dependence of direct absorption signals is
easily observed.

A multipass configuration produces a long pathlength through the absorbing medium which helps
in the observation of low density samples, but of course to a lesser extent than in CRDS. In these
experiments a White cell scheme was employed which provided ∼16 m of pathlength through the
plasma. The probed plasma source was a hollow cathode, further details of which will be provided
in Chapter 4.

White’s multipass configuration makes use of three mirrors. The first is positioned exactly one
radius of curvature away from two others that are placed next to each other. The mirrors are
oriented such that the center of curvature for the first mirror is positioned between the two mirrors
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Figure 3.6: White cell mirror configuration (M1,M2,M3) and their centers of curvature (open circles
1,2,3).

on the opposite side, and the number of passes is set by positioning the centers of the other two
mirrors onto the first mirror (see Figure 3.6). Adjusting the spots of the two close mirrors allows
the operator to select the number of passes the light will make through the cell, in multiples of four.
An advantage of placing the mirrors at exactly the center of curvature of one another is the beam is
re-focused every time it traverses the cell. The only losses are due to scattering and absorption [94].

Two 1-in diameter gold mirrors were used in our experimental setup. One mirror was cut in half,
providing two half-moon surfaces for one end of the cell. The remaining mirror was cut in a mushroom
shape to make space for the incoming and outgoing beams to pass. These are depicted in Figure 3.7.
Unlike the ringdown setup where the mirrors were structural members of the experimental chamber,
these mirrors were positioned outside of the hollow cathode cell on kinetic mirror mounts.

Figure 3.7: White cell mirrors (M1,M2,M3).
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Chapter 4

Plasma sources

The experiments in this work were carried out under a diverse set of conditions. Sometimes this was
motivated by the desired parameters of a particular experiment (e.g. temperature), and at others it
was driven both by these parameters and limitations of the experimental apparatus, as was the case
for dissociative recombination. This chapter provides a description of the two plasma sources that
were used, as well as the conditions produced by each. Two additional sources that are currently
under design will also be introduced.

4.1 Pulsed solenoid

The pulsed solenoid source was designed to produce ions for the CRYRING ion storage ring at the
University of Stockholm, Sweden. It had been built for a previous experiment [95]. In addition to
producing rotationally cold ions via a pinhole supersonic expansion, this source’s low duty cycle was
suitable for the pumping capacity of the storage ring’s vacuum systems. The pulsed solenoid source
was also used to explore the H+

3 + H2 reaction.

Figure 4.1: The pulsed solenoid source. The cutaway shows the interior spring, armature, and
poppet.
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4.1.1 Design

The source is a solenoid valve (Parker Hannafin General Series 9) with a 500 µm diameter pinhole.
The pinhole opening is located 1 mm upstream of a ring electrode. Approximately 4.2 cm down-
stream from the electrode is a grounded skimmer that serves to collimate the ion beam for injection
into the ion storage ring. A spring-mounted iron armature, designed to hold a teflon poppet in place
in the pinhole, moves to extract the poppet and form a gas pulse (see Figure 4.1).

The entire assembly was mounted to aluminum plates that could be slid over metal rods, making
it possible to translate the source along the axis of the gas pulse. These rods were attached to a
square plate at the back of the vacuum chamber which was sealed to the chamber by a large o-ring.
Combined with a micrometer, this made it possible to translate the source vertically as well as
horizontally. Moving the source in either direction allowed the spectroscopic sampling of different
regions of the expansion in order to characterize the rotational temperature of the ions.

The source was electrically isolated from the rest of the chamber (many of the rods and the gas
feed tube depicted in Figure 4.1 are made of non-conducting material). This made it possible to
monitor the plasma current via a resistive circuit in an external discharge driver box.

4.1.2 Operation

The solenoid source was activated using a home-built driver box (circuit diagram, Figure D.2)
coupled to an external power supply and pulse generator. The experimental setup is shown in
Figure 4.2. The high voltage power supply provided -300 V of potential to six 22 µF capacitors
in the driver box. These capacitors would discharge their voltage to the solenoid upon receipt of a
trigger pulse from a pulse generator (Quantum Composers 9518+).

The trigger pulse itself was 100 µs in duration, but the source would typically produce a 0.75-
1.0 ms gas pulse due to delays imparted by the mechanical movement of the poppet. The gas
pulse was embedded in a 1 ms discharge pulse that was provided by a separate power supply and
driver (circuit diagram, Figure D.3). The discharge pulse was between -450 and -800 V, and was
applied to the electrode ∼200-500 µs before the gas pulse. Previous experiments indicated that the
temperature of the expansion was independent of the pulse duration, however, the possibility existed
that embedding the gas pulse in the discharge pulse had a heating effect. This was not tested during
the course of the experiment.

The rotational temperature had a strong dependence on the condition and seating of the poppet.
As a result it was sometimes necessary to ‘tune’ the seating of the poppet in the pinhole by twisting
the gas feed tube. This was possible because the tube was fed through an Ultra-Torr connection
on the translatable aft section of the chamber, which could be loosened when adjustments were
necessary.

The test gases were fed into the solenoid with a backing pressure of 2 bar. The chamber was
evacuated to a pressure of approximately 15 mbar at the rate of 3500 L s−1 by a 2-stage Roots
blower that was backed by a rotary vane pump (Leybold).

The plasma was probed by the laser on the center axis of the expansion, approximately 3.9 cm
downstream of the electrode. This position was immediately in front of the skimmer, and was selected
with the assumption that the ions in this region were the ones that were going to be injected into
the ion storage ring.
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Figure 4.2: The ringdown/pulsed source experimental setup. The source was mounted horizontally
in the experiment, but is shown here in a vertical orientation through a cutaway for simplicity.

Integration of pulse timing with ringdown

The integration of continuous wave cavity ringdown with the pulsed source provided an interesting
challenge. As described in §3.3.1, one of the cavity mirrors was dithered by a piezo actuator. This
caused the cavity to periodically move in and out of resonance with the incident light. Spectroscopy
would be relatively straightforward if the test gas were continuously present, but a pulsed source
requires anticipation of the ringdown event as discussed in Birza et al. [96].

To account for this, a ringdown prediction code was integrated with the LabWindows data
acquisition routine (developed by M. Zwier and discussed in [93]). The ringdown data and the
piezo ramp voltage (a sawtooth function) were fed to the computer via a 14-bit digitizer (National
Instruments 5122). The sawtooth function (depicted in Figure 4.3) was analyzed to determine
peak and minimum voltage, as well as the frequency of the sweep. Up to two ringdown events
were recorded per upsweep of the sawtooth along with the voltage at which the ringdowns occurred.
After approximately 3 ms of exponential fitting of the ringdown decay and other calculations, another
measurement was taken to determine the sign of the slope of the piezo sweep. This was done to
ensure the measurements were only being taken on the upsweeps of the piezo ramp. If a ringdown
event was detected at the same voltage on the next piezo upsweep, the ringdown was considered
repeatable. The resulting trigger voltage was then offset to a lower voltage than measured. This
‘lead’ voltage was calculated from dV/dt, which was derived from the measured sawtooth frequency
and a lead time which could be set by the operator in µs. The intent of the lead voltage was to
account for valve actuation and ion time of flight so the heart of the discharge pulse would be in the
laser beam path at the time of the ringdown (∼3.9 cm downstream).

If a ringdown actually occurred when the source had been triggered, then the absorbance data
from that ringdown event was recorded in an array of ‘sample’ events. The majority of ringdown
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Figure 4.3: Gas pulses were synchronized with ringdown events, which occured periodically with the
dithering of one of the ringdown mirrors.

events, however, were deemed unrepeatable by the prediction code. The absorbances from these
events were recorded in a ‘baseline’ array. The average of the baseline absorbance was subtracted
from the average of the sample absorbance in order to calculate the final absorbance spectrum (see
§3.3.1). In order to reduce the influence of time constants measured from ringdown events formed
by higher order transverse modes, the ringdown code only stored points that were among the 50%
closest to the mean. Additional logic was added to reject data if the predicted and actual ringdown
events occurred outside of an operator-set time tolerance, and ringdowns that occurred too close
to the peak of the piezo sweep were rejected in order to prevent accidental measurements on the
down-sweep.

In order to initiate the solenoid and discharge pulses, a trigger circuit was designed to allow the
ringdown prediction code to interface with the pulse generator. The prediction code sent an output
voltage to a homebuilt op-amp switch. The voltage was held at a low value as long as there were
no predicted ringdowns. The op amp switch was also fed with the same piezo sawtooth voltage as
was sent to the prediction code. If a repeatable ringdown was detected, the output voltage was set
to the calculated lead voltage and the op-amp would send a trigger pulse to the pulse generator as
soon as it detected equivalence between the two voltages. An additional op-amp was included in the
circuit as a Schmitt trigger in order to sharpen the output TTL signal that was sent to the digital
delay generator. There were typically 40-50 ringdowns per second, 5 of which were ringdowns with
sample present.

The DFG was scanned by tuning the Ti:Sapph laser. Voltage commands were sent from the
ringdown code to the Ti:Sapph laser by way of virtual interface storage architecture (VISA). Forty
ringdown samples were taken at each point, after which the ringdown code would step the laser by
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∼50 MHz.
Although the code successfully predicted the ringdown events, the measurements varied in such a

way as to lead to significant (factor of two to three) differences in the lineshape or the calculated peak
height, even after averaging over forty samples. There were multiple causes of this variation, such as
arcing and pulse timing jitter. Arcing arose from deposits on the electrode as well as inhomogeneity
in the gas pulses. With regards to timing jitter, if the resonance was slightly earlier or later than
predicted, the measurement would occur in different locations along the gas pulse. There were also
long-term effects which may have been due to the flushing of impurities through the gas feed line.
The short-term variations were mitigated by normalizing the data, which was accomplished using
a boxcar integrator (Stanford Research SR250) to record an average discharge current during the
measurements. The spectra were then divided by this current. In addition, each peak was fit with
a Gaussian lineshape (Doppler broadening was the source of line broadening) and it was the peak
height of this Gaussian that was measured and recorded. The effectiveness of these techniques was
evident from the shrinking standard deviation that occurred with their application.

4.1.3 Plasma characteristics

Measurements with the solenoid pulsed source required knowledge of the rotational temperature
as well as the H2 and H+

3 number densities of the plasma. Temperatures were monitored spectro-
scopically during the experiments, and the number densities were predicted or observed at different
locations in the plasma.

Temperature

Expansions are ideal for rapid translational and rotational cooling of constituent molecules. The
conversion of internal energy to translational energy in expansions has been well documented [97],
with the mechanism being the collisional transfer of the internal energy to the bulk translation
of the molecules. Vibrational modes are not as easily cooled because the energy spacing between
vibrational levels is large, decreasing the probability of direct energy transfer to the translational
states by inelastic collisions. The pressure conditions used with this source fell within the limits of
a Campargue-type expansion [98], and the predicted behaviors for temperature and collisions are
presented in Figure 4.4. It should be emphasized that these curves are rough estimates only, because
they were calculated assuming a constant heat capacity ratio for the H2 gas (γ = Cp/Cv = 7/5).
This is imprecise because the heat capacity of H2 changes with temperature, and with the ratio of
ortho:para (see §2.3.1) [99, pg.17]. In addition, the temperature prediction in Figure 4.4 does not
account for the higher temperatures of a plasma.

The temperature of the expansion was measured using two different methods. First, the so-called
excitation temperature of the ions was measured by comparing the populations of the ground states
of ortho- and para-H+

3 , as measured by observing the R(1, 0) and R(1, 1)u transitions, respectively.
This was accomplished using the following equation,

n(1,0)

n(1,1)
=

g(1,0)

g(1,1)
e−∆E(1,0)−(1,1)/kBTex (4.1)

where the n terms represent number densities (cm−3), ∆E(1,0)−(1,1)=22.84 cm−1 [24], and g(1,0)/g(1,1)
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Figure 4.4: The predicted temperature, and collisions (per 0.1 mm step) in a hydrogen expansion,
calculated using [99, pg. 18].

=2, where gi is the degeneracy of the state which includes I and J . Values that are proportional
to the number density (n) were calculated by dividing the measured intensities of the transitions
by the transition dipoles (µ2) listed in Table 1.5. As mentioned in the introduction, the practice of
eliciting rotational and kinetic temperatures from the excitation temperature has been widely used,
and a more detailed discussion on this topic can be found in Chapter 6. The results of the excitation
temperature measurements using normal-H2 are presented in Table 4.1.

Absorbance (×10−6 cm−1)
H2 R(1,1)u R(1,0) R(2,2)` Tex(K) Trot(K)

1 normal 0.35 0.84 - 97.7 -
2 para 0.41 - 0.07 - 60.5
3a normal 1.32 2.83 - 77.0 -
3b normal 1.32 - 0.43 - 79.2
4 normal 0.25 0.56 - 89.5 -
5a normal 0.49 1.22 - 115.2 -
5b diluted 0.09 - 0.04 - 115.8
6a normal 0.98 2.1 - 76.3 -
6b normal 0.98 - 0.28 - 74.6

Table 4.1: Excitation and rotational temperatures measured using normal, para, and argon-diluted
H2. The ‘a’ and ‘b’ designations identify temperatures measured in close succession. Points 5 were
not used to determine the average Trot for the experiment, but are included to show that Trot can
be accurately measured for a hydrogen sample diluted in argon.

Second, the rotational temperature was measured. This was accomplished by comparing tran-
sitions from the ground state (R(1, 1)u) and from the first rotationally excited state (R(2, 2)`) of
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para-H+
3 using the equation,

n(2,2)

n(1,1)
=

g(2,2)

g(1,1)
e−∆E(2,2)−(1,1)/kBTrot , (4.2)

where ∆E(2,2)−(1,1)=105.17 cm−1. The results, also presented in Table 4.1, correlate well with the
temperatures elicited from the ortho and para ground states, and together indicated an average
temperature of 80±20 K.

For these measurements, the plasma was probed approximately 3.9 cm downstream of the pinhole.
The results were different than the predicted temperature profile in Figure 4.4. This could partially
be attributed to the fact that the curve in the figure does not account for the elevated temperature
of a plasma. Nevertheless, this source was used in a previous experiment with H2, and the excitation
temperatures measured at that time were between 30-50 K [95]. It is unclear why the expansion was
hotter in this experiment, but the pulse sequencing could have played a role as discussed in §4.1.2.

Number density

The number density of H2 molecules at the pinhole was calculated using the ideal gas approximation
with,

6.02× 1023P

RT
= [H2], (4.3)

with P = 2 atm, R = .08206 L atm mol−1 K−1, and T=300 K. A model similar to the one used to
calculate collisions for Figure 4.4 was used to extrapolate the number density for locations further
downstream [99, pg. 18].

The number density of H+
3 was assumed to be ∼4 to 6 orders of magnitude less plentiful than

H2 near the electrode based on [64], and was spectroscopically measured further downstream. This
in situ measurement was accomplished using the equivalent width (Wν) for both the R(1, 0) and
R(1, 1)u transitions. The equivalent width is the width of a rectangle with an area equal to that
of the absorption peak, but whose height has been set equal to 1. It is a tool used to compare the
relative strengths of absorption features. Equivalent width is calculated using the equation,

Wν =
∫

I◦ − It

I◦
dν, (4.4)

which, if calculating numerically can be replaced with,

Wν =
∑ I◦ − It

I◦
∆ν, (4.5)

in which ∆ν is equal to the width of the scan increments in frequency space. Starting with Beer’s
law,

It

I◦
= e−σNL, (4.6)

one can write,

Wν =
∑ (

1− It

I◦

)
=

∑ (
1− e−σNL

)
∆ν. (4.7)
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The column density can be determined by inserting the equivalent width in the following equation.

N =
3hc

8π3|µ2|
Wν

νcenter
, (4.8)

where νcenter is the center frequency, and the transition dipole moment µ is in units of esu-cm
(1 Debye2 = 1×10−36 esu2 cm2) Here, Planck’s constant and the speed of light are in cgs units.
Column density can then be converted to a number density if divided by the path length through
the absorbing medium, in this case ∼ 6.3 cm. Finally, the excited (unobserved) rotational states
were accounted for by applying a Boltzmann correction for 80 K. The concept of the Boltzmann
correction will be thoroughly discussed in §5.2.1. In short, the correction term is the proportion
of ions predicted to be in the ground state at a given temperature. Dividing the observed number
density of the ground state by the Boltzmann correction accounts for ions in the rotationally excited
states. The total H+

3 number density was found by summing the results of these calculations for
both the ortho and para-H+

3 ground states. This number density, as well as those for the neutral H2

are presented in Table 4.2.

Distance from pinhole
1 mm 39 mm

[H2] ∼ 5× 1019 cm−3 ∼ 8×1014 cm−3

[H+
3 ] ∼ 1× 1014 cm−3 ∼ 2×109 cm−3

Table 4.2: Pulsed source number densities. All values were calculated except for the H+
3 at 39 mm,

which was measured spectroscopically.

4.2 Hollow cathode cell

The hollow cathode cell constructed and used in this work was similar in many respects to other
designs in the literature [100–102], but was primarily modeled after plans provided by T. Amano.
In this design, various coolant fluids can be used to produce plasmas at different temperatures. The
hollow cathode was used to investigate the H+

3 +H2 reaction at temperatures that were cold, but
warmer than could be produced by a supersonic expansion.

4.2.1 Design

The specifics regarding the design and dimensions of the hollow cathode can be found in the senior
thesis by McGuire [103], however, an overview will be provided here for completeness. A thick-walled
glass tube that is 1.6 m in length provides the outer vacuum sleeve for the cell. The tube is capped
on the ends by 4.625-inch conflat flanges, custom machined to provide the capability to seal to the
large glass tube using o-rings, as well as to smaller diameter glass tubes that protrude outward from
the centers of the flanges. At one end, the conflat is fitted with feed-throughs that are used to
connect the coolant tubes to the hollow cathode itself (Figure 4.5).

The small diameter glass tubes on both ends are also fitted with glass appendages, providing
Ultra-Torr connection points for sample inflow, vacuum outflow, and pressure gauge attachment.
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Figure 4.5: The hollow cathode plasma cell.

Both glass tubes are connected by Ultra-Torr to hollow stainless steel tubes (of 1/16 inch wall
thickness). These tubes were cut at Brewster’s angle (55.4 ◦) at the outer ends, and BaF2 windows
were epoxied to these ends to allow laser light to pass, while separating the laboratory atmosphere
without from the test gases within.

The hollow cathode itself is a 1.4 m long, 3.8 cm diameter copper tube around which a smaller
1/4-inch diameter copper tube is wound and soldered. The smaller tubing is the conduit for the
coolant, and is wound the entire length of the cathode. The cathode tube is held in place inside the
large glass tube by teflon spacers.

There is a 2.54 cm hole located in the mid-point of the cathode, and the outer glass tube has
a small glass appendage attached above this point. It is here that a water-cooled anode is inserted
with a seal that is provided by o-rings. A small quartz connecting tube provides an isolated path
from the anode to the interior of the cathode in order to prevent arcing. A vespel ring is used to
attach the quartz tube to the anode, and to shield the parts of the anode that are not contained
within the connecting tube.

4.2.2 Operation

The hollow cathode was operated by discharging the gas with a 1 kV pulse to the anode for 200 µs.
The pulse was initiated by a digital delay generator (Quantum Composers 9518+) which sent a
TTL to a driver box (see Figure 4.6). The driver box was fed by an external power supply, and
output a square pulse to the cell with a rise time of ∼2.5 µs (see Figure 4.7). The test gas was
continuously fed into the hollow cathode cell, and evacuated by a 8.33 L/s Welch mechanical pump.
A constant ∼1.85±0.1 Torr pressure was maintained by adjusting an upstream regulator and needle
valve. Because the experimental results required a precise knowledge of the para-enrichment of
the H2 feed gas, it was necessary to provide sufficient time for the discharged gas to be replaced
by a new sample before another discharge pulse was sent to the cell. At 1.85 Torr, the time to
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Figure 4.6: The hollow cathode cell experimental setup.
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Figure 4.7: The hollow cathode current pulse (a 100 µs pulse is shown, but a 200 µs pulsewidth was
used in the experiment).

completely evacuate the 8.5 L cell was 1.2-1.5 s, depending on whether the gas was at 100 or 300 K
(the conductance is based on the temperature-dependent viscosity of the gas, see [103] for detailed
calculations). Tests were performed with highly enriched para-H2 sample gases to see if it was
possible to observe changes in the H+

3 absorption features when the discharged gas had not been
completely replaced. The para-H+

3 R(1, 1)u absorption intensity is expected to be especially sensitive
to changes in the para-H2 enrichment. The pulse frequency was slowly increased from .2 Hz to 2 Hz
while observing the R(1, 1)u transition, however, no change was observed in the peak intensity. This
was most likely an indicator that the para enrichment of the H2 gas was not significantly changed
during the course of the 200 µs pulse. As an added precaution during the experiments, a 5 second
period was used to ensure complete gas replacement.

Cooling was provided by flowing either water or liquid nitrogen through the copper tubing wound
around the hollow cathode. The water was flowed directly from the closed laboratory cooling loop,
which was held at 290 K. The liquid nitrogen flowed directly from a 160 L dewar that provided
approximately 100 psi of backing pressure. For liquid nitrogen-cooled experiments, measurements
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were begun when the outgoing line had a significant frost buildup, an indication that liquid was
flowing along the entire length of the cathode. The cell could only be used for approximately 2
hours at liquid N2 temperatures because the teflon and viton o-ring seals would start to fail, as
indicated by the quenching of the absorption feature of the ions and by a steady rise in cell pressure.
If a leak occurred, it was necessary to warm the cell to room temperature before continued use.
Alternative o-ring materials such as silicone should be investigated before further use of the hollow
cathode at liquid N2 temperatures.

4.2.3 Plasma characteristics

As with the pulsed source, it was important to understand the temperature and number density
characteristics of the hollow cathode plasma.

Temperatures

The plasma temperature was characterized in two ways: by measuring the excitation temperature
and the kinetic temperature. Measurements were made for both the water and the liquid N2-cooled
discharges. The excitation temperature data was analyzed in the fashion described in §4.1.3, using
the R(1, 0) and R(1, 1)u transitions of H+

3 . Rotational temperature was measured by comparing
R(1, 1)u and R(2, 2)`, however, the results were in many cases un-physical. Consequently, the rota-
tional temperatures were considered suspect and were not used to assign temperature in the hollow
cathode plasma. The problems with the rotational temperature measurements will be discussed
towards the end of this section.

The kinetic temperatures that were measured from the Doppler broadening of the lines were more
repeatable than the excitation temperature measurements. To measure the line broadening, the
laser was scanned across the transition frequency at a rate of ∼6 MHz s−1, and the data acquisition
software took measurements at regular intervals so that an absorption peak could be reconstructed
in the IGOR data analysis application. This method required the operator to synchronize the start
times for the laser scanning and the digital delay generator that sent the trigger pulses to the
discharge driver. The operator was also required to record the start and end frequencies for the
scan, as well as the starting and ending voltages on the laser. These were input parameters that the
IGOR procedure would use to convert the width of the absorption peak from a laser voltage to an
meaningful width in frequency space.

The IGOR procedure then fit the absorption peak with a Gaussian function from which the
width of the feature was extracted. The procedure returned a value equivalent to w in the following
equation for a normal distribution,

f(x) = ae−
(

x−x◦
w

)2

= ae−
(x−x◦)2

2σ2 , (4.9)

from which the standard deviation for the Gaussian fit was obtained using,

σ =
w√
2
. (4.10)

44



The kinetic temperature was then calculated using the following relation,

Tkin =
mc2

kB

(
σ

νcenter

)2

, (4.11)

where m is the mass of an H+
3 ion. Figure 4.8 presents a sampling of data taken using the scanning

method for kinetic temperature measurement. The data were taken when the hollow cathode cell was
being cooled with water. Table 4.3 presents a sample of the measured laser voltages, frequencies and

Laser voltage Freq. (cm−1)
Start End Start End Width (cm−1) σ Temp. (K)

.22258 .19564 2725.85 2725.94 .01197 .00847 312.9

.04530 .02377 2726.18 2726.26 .01192 .00843 310.0

.26861 .24169 2725.85 2725.94 .01179 .00833 303.4

Table 4.3: Some of the data used to calculate the kinetic temperature of the water-cooled plasma in
the hollow cathode cell.
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Figure 4.8: Spectra taken for the calculation of kinetic temperature in the hollow cathode cell
plasma. (a) normal-H2, (b) 99.9% para-H2.

results for the water-cooled kinetic temperature measurements. The average temperature calculated
from 10 such measurements was 308 ± 10 K.

Some of the measurements for excitation temperature (using normal-H2) are presented in Fig-
ure 4.9. There were a few instances when the calculated excitation temperature was significantly
hotter than the nominal value of 300 K (∼400 K), however, these measurements were limited in
number, and were not included in the average value of temperature for the water-cooled plasma.
These high temperature excursions could be explained by the nature of the excitation temperature
calculation. Recall that the expression for excitation temperature involves an exponential function,
and small errors in the absorption measurement will translate to large errors in temperature.

The upper panel of Figure 4.9 shows a constant temperature condition, and the lower panel
shows a plasma in which the temperature was increasing. Both static and changing conditions like
these were observed at times throughout the measurements. It is important to note that it was the
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temperature at the beginning of the pulse that was used to characterize the temperature for both
water and liquid N2-cooled experiments. This was because the pertinent data were taken at the
beginning of the pulse. A more detailed explanation will be provided in Chapter 6, but in short,
the enrichment of the para-H2 feed gas was better known at the beginning of the pulses, enabling a
more accurate interpretation of the results. Combining the kinetic temperature from the Doppler-
broadened absorption lines and the excitation temperature data, the average temperature in the
water-cooled hollow cathode plasma was 310 ± 20 K.
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Figure 4.9: H+
3 excitation temperature measured in a water-cooled, normal-H2 plasma in the hollow

cathode cell.

Post-experiment data analysis indicated that the liquid N2-cooled plasmas were grouped in two
separate temperature regimes. These two regimes were likely the result of different cryogen flow
rates due to different backing pressures in the liquid N2 dewar. For the warmer of the two plasmas,
only excitation temperature measurements were obtained because these warmer conditions were
grouped early on in the cryogenically cooled experiments, and the scanning method for measuring
temperature from Doppler-broadened lines had not yet been developed. Typical results for this
temperature range, observed in normal-H2 plasmas, are plotted in Figure 4.10. In this figure, the
lower panel shows a larger, more abrupt change in temperature than observed in the lower panel of
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Figure 4.10: H+
3 excitation temperature in a liquid N2-cooled, normal-H2 plasma in the hollow

cathode cell.

in Figure 4.9. Although rare, this type of temperature change was most likely due to the onset of
an arcing condition, and demonstrates how drastically the plasma temperature could be affected.
Overall, the data indicated that the temperature range for this set of liquid N2-cooled experiments
was 180 ± 10 K.

The second temperature condition measured with liquid N2 was confirmed by both kinetic and
excitation temperature measurements. The kinetic temperatures were obtained by observing the
transitions in both normal- and highly enriched para-H2 plasmas. Some of the data are presented
in Table 4.4. Excitation temperature was also measured, but this time by comparing the peak
heights of the R(1, 0) and R(1, 1)u scans. A typical result is presented in Figure 4.11, and the
excitation temperature calculated from these data is 135.8 K. Combining measurements of 16 kinetic
temperatures and ∼4 excitation temperatures under these conditions gave an average temperature
of 130 ± 10 K. With two separate temperature regimes for the liquid N2-cooled plasmas, it was
important to be sure the data were being analyzed in the appropriate temperature range. Occasional
temperature checks that had been performed during data collection, along with careful assignment
of the data sets based on the sequence of experiments, provided the necessary information for this.
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Voltage Freq. (cm−1)
Start End Start End Width (cm−1) σ Temp. (K)

.27129 .25031 2725.850 2725.917 .00743 .00526 120.6

.18873 .16779 2726.180 2726.259 .00780 .00552 132.8

.24006 .21911 2762.020 2762.090 .00776 .00549 128.0

Table 4.4: Data used to calculate the kinetic temperature of the liquid N2-cooled plasma in the
hollow cathode cell.
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Figure 4.11: An example where Tex=135.8 K, as measured by comparing the peak heights of scanned
R(1, 0) and R(1, 1)u absorption features.

Rotational temperature in the hollow cathode cell

Even though the data were not used, the rotational temperature of the plasma was measured along
with the excitation and kinetic temperatures during the experiments, and for different para-H2

enrichments. In many of the rotational temperature measurements, the results showed a temperature
that was close to that measured by the other means (see Figure 4.12). In contrast, many of the
Trot measurements indicated colder than expected temperatures. Figure 4.13 shows the rotational
temperatures measured from an enriched and a normal-H2 water-cooled plasma. Both are indicators
of anomalous behavior, because the temperature of the plasma could not have been colder than the
temperature of the cooling water (∼290 K) especially considering that energy was being pumped into
the system in order to form the plasma. Similar behavior was observed by comparing the scanned
R(1, 1)u and R(2, 2)` absorption peaks in the 130 K plasma, where the rotational temperature was
calculated to be ∼90 K. There are two possible explanations for this behavior. Either the rotational
temperature was not thermal, or there was a problem with the measurement itself.
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Figure 4.12: H+
3 rotational temperature in 99% enriched para-H2 measured in the 130 ±10 K liquid

N2-cooled plasma.

Nonthermal rotational behavior of H2 has been observed in supersonic expansions [104,105] and
after the passage of shocks in para-H2 gases [106]. Specifically, the more highly excited rotational
states of H2 do not quickly relax to thermal distributions. Although the measurements in this work
involved the Trot of H+

3 , these ions are most likely to relax via collisions with neutral H2, and it is
reasonable to expect that some of the character of the H2 rotational distribution would be transferred
to the H+

3 ions during such collisions. This argument is strengthened by the fact that many of these
reactions involve the H2 nuclei being incorporated into new H+

3 and vice versa (see Chapter 6).
An alternative explanation was that there was an error in the measurement of rotational tem-

perature. To ensure that the InSb detector used in this experiment had a linear response to mid-IR
intensity changes, the detector was calibrated over a wide range of DFG power settings at each of
the wavelengths for R(1, 0), R(1, 1)u, and R(2, 2)`. The data are shown in Figure 4.14. The detector
response was fairly linear at each wavelength, however, the voltage range over which this linearity
exists became more limited as the frequency of the incident light increased. In addition, the scatter
of the data was higher at the R(2, 2)` frequency than at the others. Care was taken to reject data
that did not fall within the linear detector response, but given the scatter and limited range of the
linear response for R(2, 2)`, it is possible that the rotational temperatures that were measured using
this transition had a higher probability of error. Amano, whose cathode design was most similar
to ours, performed experiments measuring rotational temperature of H+

3 with different cooling flu-
ids [107]. Although the temperatures he measured were surprisingly close to the temperature of
the coolant, he never observed a condition in which the rotational temperature was significantly
colder than expected, as observed in this work. Further investigation of this phenomenon in this
experimental setup is warranted.
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Number density

The H2 number densities were calculated assuming near ideal gas conditions and are listed in Table
4.5. The values for H+

3 were predicted from theory and were experimentally observed. Using the
approximations for a positive column found in [6, p. 30] and [108, Figs. 61 and 126], along with
a cathode diameter of 1.9 cm, a current of 1.25 A, and a pressure of 1.85 Torr, a number density
of [H+

3 ]∼1.6×1011 cm−3 was predicted. Using the procedures outlined in §4.1.3, we measured the
equivalent widths of the lines generated from the Tkin scans, then used a 1680 cm pathlength to
calculate number densities (the total path length through absorbing media for this White multipass
configuration). The spectroscopic results are within an order of magnitude of the number densities
predicted by theory, and are listed along with those for [H2] in Table 4.5.

300 K 180 K 130K

[H2] ∼ 6× 1016 cm−3 ∼ 1× 1017 cm−3 ∼ 6× 1017 cm−3

[H+
3 ] ∼ 8× 1011 cm−3 - ∼ 1× 1012 cm−3

Table 4.5: Hollow cathode number densities. The H2 values are calculated, while the H+
3 values

were measured spectroscopically.

4.3 Future sources

New sources are currently undergoing development and testing in order to provide additional data
that will ultimately complement this work.

4.3.1 CW supersonic expansion source

With the concurrent effort in our group to develop the SCRIBES (Sensitive Cooled Resolved Ion
BEam Spectroscopy) experiment, a continuous flow supersonic expansion source is being designed
to reliably produce rotationally cold ions for an extended operating lifetime (K. Crabtree and C.
Kauffman). The source consists of a stainless steel nozzle and electrode, and macor spacers as seen
in Figure 4.15. The pinhole is 250 µm in diameter and opens into a 500 µm channel. The distance
from the pinhole to the electrode is 2.5 mm. The electrode itself is tapered like the bell of a trumpet,
expanding from 500 µm to 2 mm. The source is designed to operate with 1-3 bar backing pressure
and a -200 to -400 V discharge potential (15-45 mA current).

4.3.2 Pulsed piezo source

A new pulsed piezo source has been designed to produce cold ions for another dissociative recombina-
tion experiment at the CRYRING ion storage ring or at the Test Storage Ring (TSR) in Heidelberg,
Germany. The previously described solenoid pulsed source was prone to temperature excursions due
to detuning or poppet damage. In contrast, piezo sources have been shown to consistently produce
short duration pulses (∼200 µs), with short rise times (≤100 µs), over extended periods of use [109].
A first-generation piezo source design was tested, which led to improvements for the latest design.
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Figure 4.15: Continuous flow supersonic expansion ion source (courtesy of K. Crabtree).

Both the first and second-generation designs are based on a source used in the Continetti group
at the University of California at San Diego. The latest design has been modified to mount to a
custom-built flange on the outside of the vacuum chamber. Previously, the entire source had to
be mounted inside the chamber, making mid-experiment adjustments difficult and time-consuming.
Another improvement allows the piezo valve to be adjusted while the source is in operation by
using permanently mounted tools connected through the back of the source by Ultra-Torr fittings
(Figure 4.16). In the old design, the source must be shut down and opened to ambient air to per-
form such adjustments. Additionally, the older design is not electrically isolated, meaning that the
discharge current is dumped into the housing of the source, and ultimately to the structure of the
vacuum chamber. The new design incorporates changes to float the source so the ion current can
be monitored.
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Figure 4.16: New piezo pulsed source (drawings by P. Buscay).
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Chapter 5

Dissociative recombination

Dissociative recombination (DR) is the primary process by which H+
3 is destroyed in the diffuse in-

terstellar medium. Theoretically determined rate coefficients for the DR of H+
3 have indicated that

the para spin modification will be destroyed at a higher rate than the ortho, and preliminary exper-
imental results indicate that this is so. We intended to measure the dissociative recombination rate
of a single state of H+

3 , the ground state of para-H+
3 . In so doing, we hoped to conclusively determine

the differences between the rate coefficients of ortho- and para-H+
3 . This chapter will provide a brief

history of the search for the H+
3 dissociative recombination rate, followed by an introduction to the

theoretical underpinnings of this important process. The details of the experiment will be described
along with the results.

5.1 History and theory of H+
3 dissociative recombination

History

The rate coefficient for the dissociative recombination of H+
3 with electrons has had a turbulent

history, with values that have ranged over 4 orders of magnitude [110,111]. The first measurements
were taken in 1949 by Biondi and Brown using a microwave afterglow technique [112]. In this
technique, a microwave-generated plasma is suddenly extinguished, and the change in the resonant
frequency of the cavity (dependent on the electron population) is monitored in order to measure
the electron density. This technique was used repeatedly over the next twenty years until a merged
beam experiment was performed by Peart and Dolder to measure recombination at relatively cold
temperatures (4 K) [37,113]. This was the first of many experiments in which an inclined or merged
beam of electrons was combined with a beam of ions, and the neutral products of recombination
were counted. The mid 1980’s saw the advent of flowing afterglow techniques in which ions are
produced and subject to recombination, and electron density changes are measured in order to
determine the rate of recombination. Ions are mass selected and identified in order to assign the
decay to a particular ionic species [114]. It was a variant of the afterglow experiments that measured
a much lower recombination rate, a rate that was used by many astrochemists to the detriment of the
field [37, pg. 209-220]. Measurements were performed using laser spectroscopy and a hollow cathode
in the late 1980s which raised the rate coefficient to close to currently accepted values [107, 115].
In these experiments, a discharge was formed in a hollow cathode cell and the decay of the H+

3

absorption signal was monitored by observing some of the ν2 ← 0 rovibrational transitions.
Finally, in 1993, one of the first storage ring experiments was undertaken by Larsson et al. [116].

With this experiment came the ability to precisely measure recombination in a rarefied environment
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at low vibrational temperatures.
The development of the theory of H+

3 DR was equally storied, with many of the attempts to
model the process falling short due to limited accounting of the many energetic degrees of freedom
involved. Between 2001 and 2003, Kokoouline and Greene performed a full dimensional quantum
calculation that included the significant effect of Jahn-Teller distortions on the DR cross section,
along with additional vibrational and rotational degrees of freedom. This led to the first theoretical
treatment that accurately predicted rate coefficients that were close to the storage ring measurements
of the time, and within an order of magnitude of the now accepted rate coefficients [117,118]. This
study also predicted that ortho-H+

3 has a higher rate coefficient than para-H+
3 .

At about the same time that the theoretical predictions were converging on experimental results,
measurements of the currently accepted rate coefficients were being performed at the CRYRING ion
storage ring in Stockholm, Sweden. Using a pulsed source that produced rotationally cold ions (30
K), McCall et al. measured the thermal rate coefficient for recombination with 23 K electrons to
be 2.6× 10−7 cm3 s−1 [95]. This result was validated 3 years later by an experiment performed by
Kreckel et al. at the Test Storage Ring (TSR) in Heidelberg, Germany [59]. The TSR experiment
also included the first look at DR when using an enriched para-H+

3 plasma, the result of which
showed that the para spin modification had a higher DR rate coefficient. Shortly thereafter, a
different theoretical treatment validated this result using more accurate wavefunctions and a greater
number of rotational states [119]. Although a difference was observed in [59], it was not seen in
a later experiment performed at the TSR [61]. A testament to the effort that has been expended
on behalf of H+

3 dissociative recombination is found by inspecting the table of contents of the book
Dissociative Recombination of Molecular Ions with Electrons [120, pg. xi-xv]. Over 20% of this
volume is devoted to experiments, theoretical treatments, and observations of H+

3 DR!

Theory

There are different pathways by which the dissociative recombination of H+
3 can take place. All lead

to one of two product branches. The first branch gives three neutral atomic fragments

H+
3 + e− → H + H + H, (5.1)

and the second gives only two fragments,

H+
3 + e− → H + H2. (5.2)

The branching ratios for these two product pathways were experimentally measured in [95] and [121].
In [95], where the ions were considered to be rotationally cold, these two pathways were observed to
occur in roughly a 2:1 ratio, respectively.

The first dissociative recombination pathway, which was proposed by Bates, is called the direct
path (Figure 5.1) [122]. Here, the captured electron possesses enough energy to excite one of the
H+

3 electrons to a state described by an antibonding wavefunction which is an eigenfunction of
a dissociating potential. The nuclei subsequently move apart and dissociation takes place [123].
The dissociation occurs on timescales fast enough that the neutral complex does not have time to
autoionize (eject an electron) before it dissociates.
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Figure 5.1: Direct dissociative recombination; the arrow represents the capture of an electron (energy
EDirect) into an eigenstate of a dissociating potential.

This mechanism alone could not explain the recombination rates that were being observed in the
1950s and 1960s. To account for this, Bardsley described a second, indirect pathway in which the
colliding electron is captured into a vibrationally excited Rydberg state (Figure 5.2) [124], which
then mixes with a dissociating potential. The differences in the DR rate coefficients between ortho-
and para-H+

3 are presumed to arise from the differences in the available Rydberg states between the
spin modifications.

E
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Rydberg States

Figure 5.2: Indirect dissociative recombination; the arrow represents an electron that has been
captured into a Rydberg state which subsequently mixes with a dissociating state.

DR can also occur via a tunneling mechanism (Figure 5.3). In this process the wavefunctions of
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Figure 5.3: Tunneling dissociative recombination; the arrows represent electrons excited to states
from which they tunnel to dissociating states.

the ion and the dissociative states mix, but only after the molecular potential has been penetrated.
As with the indirect path, this can also take place via a Rydberg state which leads to a separation
between direct and indirect tunneling [125, pg. 21].

5.2 Experiments

The objective of this experiment was to take precise measurements of the DR rate of para-H+
3

in order to build on the preliminary results of [59]. In that experiment the para enrichment was
not precisely known, nor were the differences in the rate coefficients of the two spin modifications
quantified beyond rough comparisons. The experiment described here occurred in two parts. The
first part was spectroscopic in nature, with the aim of optimizing the plasma’s para-H+

3 fraction.
The second part consisted of the DR measurements at the CRYRING ion storage ring.

5.2.1 Spectroscopy

With the goal of producing H+
3 ions in a single quantum state (ground state para-H+

3 ), the pulsed
solenoid source was used to produce a rotationally cold expansion (§ 4.1), and experiments were
performed to quantify the H+

3 ortho:para ratio in plasmas formed from various enrichments of para-
H2 feed gas as well as from different enrichments that had been diluted in an inert gas. This was
motivated by the spin selection rules (see Chapter 6) which dictate that only para-H+

3 will form if
a para-H2 feed gas is used to form the plasma. The temperature and enrichment of the expansion
were measured spectroscopically using DFG system I (§ 3.1).

Spectroscopic experiments were initially performed before shipping the ion source to Sweden.
During these pre-shipment experiments it was determined that the best para-H+

3 enrichment could
be achieved by diluting a highly enriched para-H2 gas in a 1:99 ratio with argon. The reasons for

58



this will be discussed in Chapter 6. While in Stockholm, the source exhibited symptoms that it was
producing rotationally hotter ions than had been observed in our laboratory, and so the decision
was made to change the poppet and re-tune the solenoid ‘in the field.’ After this action, the data
indicated that the ions were colder than with the initial poppet, and the experiment was completed
(see §5.2.2). New enrichment and temperature experiments were performed once the source was
returned to the University of Illinois, and it is these measurements that are reported here. As
described in Chapter 4, the rotational temperature of the expansion was measured at 80±20 K.

Performing spectroscopic measurements after the DR experiment did have some advantages.
Recall from Table 2.1 that stored para-H2 has a back-conversion rate which can be used to calculate
sample enrichment after known periods of time. The final DR experiment was performed 12 days
after the sample had been produced (the sample gas was made at the University of Illinois and
shipped to Sweden). As a result, the gas was at least 97% enriched at the time it was being used
in Stockholm. Knowing this, it was possible to produce and measure almost the exact para-H+

3

enrichments used in the DR experiments.
The enrichments were measured by scanning the peaks of both R(1, 0) and R(1, 1)u. As described

in § 4.1.3, the number density of ions can be measured by integrating the scanned peak to determine
an equivalent width. By that same token, the peak heights of R(1, 1)u and R(1, 0) can be used to
compare values that are proportional to the number densities of these species, as long as the peaks
are measured under similar expansion conditions.

In order to account for pulse to pulse differences in the ion density, the data were normalized
by the plasma current as described in § 4.1.2. A sampling of these normalized measurements are
presented in Figures 5.4 through 5.6. As can be seen in these figures, dilution greatly reduced the
signal strength.
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Figure 5.4: Current-normalized spectrum (normal H2).
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Figure 5.5: Current-normalized spectrum (97% para-H2).
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Figure 5.6: Current-normalized spectrum (diluted 97% para-H2).
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A Gaussian curve was fit to these results, and the peak height (α) was obtained from the fit. The
absorbance was converted to a value proportional to the number density by dividing the spectra by
the respective transition dipole moments (see Table 1.5).

Finally, a Boltzmann ‘correction’ was applied to both observed ground state number densities (n)
in order to account for the unobserved ions populating the excited rotational states of a particular
spin modification,

all states∑

i

ni =
nobserved

B(1,0) or (1,1)
. (5.3)

B(1,0) or (1,1) is the so-called Boltzmann correction. It is equal to n(1,0) or (1,1), the thermodynamically
calculated population in the ground state at Trot, divided by the partition function Z for that spin
modification,

Z(Trot) =
all states∑

i

gJ(i)gI(i)e
−Ei/kBTrot , (5.4)

The choice of the Boltzmann correction (B) was based on the measured Trot because the Boltzmann
distribution was calculated over the rotational manifold. See Tables B.7 and B.8 for the values of
B used in these calculations. The collected data can be found in Appendix A, and the results are
summarized in Table 5.1.

% para-H2 Feed % para-H+
3

25.0 (normal-H2) 49.1 ± 2.4
97.0 ±0.8 74.7 ± 2.1
97.0 ±0.8 (Ar dilution) 83.6 ± 1.9

Table 5.1: The para-H+
3 enrichments used in the DR experiments.

The standard deviations were calculated from the population standard deviations (found in the
tables of Appendix A), and from the standard deviations that arose from applying the Boltzmann
corrections over a ±20 K temperature range. The latter values are not tabulated. The reason the
highly enriched para-H2 did not produce a more highly enriched para-H+

3 plasma will be explained
in Chapter 6.
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5.2.2 Storage ring

The CRYRING ion storage ring is maintained and operated at the Manne Siegbahn Laboratory
on the campus of the University of Stockholm. It was one of the first ion storage rings used for
dissociative recombination experiments [126, pg. 7].

The ring is composed of 12 sections, and has a circumference of 51.63 meters (Figure 5.7) [125,
pg. 29-42]. Ultra-high vacuum is maintained inside the ring by a series of getters, cryopumps
and turbopumps. Ions are injected from a source into an accelerating ion optic stack (in this
experiment the H+

3 ions were accelerated to 30 kV). They are further accelerated by a radio frequency
quadrupole that increases their energy to 900 keV. An injection region deflects the beam that
is already circulating within the ring, allowing the new ions to merge with the counterclockwise
propagating flow. An additional radio frequency quadrupole serves to accelerate the beam to 13 MeV
during the first 1 s of revolutions. It does so by first bunching the ions with an alternating RF signal,
then synchronizing these bunches such that their next arrival coincides with an increasing electric
field. Once this acceleration period is complete, the ion bunches are able to relax into a continuous
stream of ions throughout the ring. It is this high ion energy that enables precise measurements
with the cooled electron beam, an advantage of performing DR experiments in a storage ring.

Figure 5.7: The CRYRING ion storage ring.

The ions continue to be stored in the ring under the influence of dipole bending magnets as well as
quadrupole and sextupole focusing magnets. The period of time that the ions can be stored is another
advantage of the ring. The storage time, on the order of seconds, allows the ions time to vibrationally
relax. Experiments were performed at TSR in which the rotational and vibrational temperatures of
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stored H+
3 ions were measured using Coulomb explosion techniques. The measurements were taken

from a point in time immediately after injection all the way up to tens of seconds of storage. The
results indicated that excited vibrational states of H+

3 relax within 2 s, in contrast to much slower
rotational relaxation (≥ 10 s) [127]. The latter emphasizes the importance of preparing ions in a
rotationally cold state.

An electron cooler merges a steady stream of nearly monoenergetic electrons with the ion beam.
The electrons in the cooler are produced by a cathode source with a 100 meV isotropic energy
distribution, and are accelerated under the influence of supercooled solenoid magnets. The longitu-
dinal energy spread is reduced to 0.1 meV and the transverse energy spread to 2 meV by adiabatic
acceleration and expansion in a magnetic field of decreasing intensity. The electron beam is merged
with the ion beam by a toroidal magnet, then bent out of the ion beam path by another.

The electron cooler serves two purposes. First, it cools the ion beam because of the Coulombic
drag forces that exist between the positively charged ions and the nearly monoenergetic electrons.
Second, the electrons in the beam initiate recombination events when the beam energy is ramped
and the energy difference, Ed, is on resonance with a recombination pathway. Ed is known as the
detuning energy, and it represents the energy of the electrons in the ion frame, not including the
electron thermal spread. In this experiment, the electron cooler cathode voltage was ramped from
2965 to 1892 V over a 1 s interval. This produced Ed in the energy range of 0 to 30 eV.

Actual recombination events are counted when the product neutral particles, no longer subject
to the forces of the ring’s bending magnets, continue in a tangential direction from the cooler section.
The particles are counted when they strike a surface barrier detector. The impact produces a current
that is proportional to the energy of the striking particle. In addition to the surface barrier detector,
a multi-channel plate (MCP) detector positioned upstream of the cooler measures the background
recombination rate, which is used in calculating the actual recombination rate coefficient,

αDR(Ed) =
RbNDRCring

NbneLcooler
. (5.5)

In this equation, Rb is the destruction rate per ion per unit time as measured at the MCP detector,
NDR represents the number of DR events counted by the surface barrier detector, Cring is the
circumference of the ring, Nb is the number of background counts measured by the MCP detector
(a term closely related to Rb), ne is the electron density in, and Lcooler the length of, the cooling
region. The destruction rate term is calculated using,

Rb =
viqCref

CringIi
, (5.6)

with vi representing the ion velocity, q the charge of an electron, Cref the count rate at the MCP
detector (dNB/dt), and Ii the ion current [95].

Three separate storage ring experiments were performed. Each experiment collected approxi-
mately 20,000 counts of data taken over a period of 12 to 36 hours (depending on the ion current
density). The first experiment was performed with the 83.6% enriched para-H+

3 (from 97% enriched
para-H2 feed gas diluted to 1% in Ar), and was intended to obtain the best measurement of the
para-H+

3 recombination rate. The second experiment used the 49.1% para-H+
3 gas (from normal-H2)

in the hopes of obtaining a baseline performance calibration and to compare the results of this set
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of experiments with those of the measurements in 2002 [95]. Finally, an experiment was conducted
with 74.7% para-H+

3 (from the undiluted 97% enriched para-H2) in order to observe the difference
made by smaller changes in the para-H+

3 enrichment. The respective post-acceleration ion currents
for these experiments were 8.16 nA, 54 nA, and 48 nA.

The raw data were corrected to account for the background contributions from ion beam inter-
actions with residual gas in the ring. This subtraction did not affect the rate coefficients at small
interaction energies because the DR signal in these regimes was orders of magnitude higher than that
of the background counts. In addition, the data were corrected for the space-charge of the electrons
and for the non-coaxial merging of the beams in the toroidal regions of the electron cooler [62].

5.3 Results

The results of the three experiments are presented in Figure 5.8. In this figure, the rate coefficients,
αDR, have been multiplied by a factor of E

1/2
d . Multiplying the data from the different experiments

by this factor does not change the relative differences between them, however, it does improve the
presentation by removing the logarithmic scaling.
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Figure 5.8: The dissociative recombination rate coefficient for three different para-H+
3 enrichments.

The DR rate coefficient, αDR, clearly has a dependence on the H+
3 spin modification. The

differences continue up to ∼200 meV, with the exception of a region where they approach each other
around 6-7 meV. There is a 16% systematic uncertainty, mostly due to inaccuracies in the electron
energy measurement, that is not shown in these results. This uncertainty is not included because it
affects all three results in the same way, and should not change the differences between them.

The experimentally determined 83.6% para-H+
3 and 49.1% para-H+

3 rate coefficients were used
to extrapolate DR rate coefficients for hypothetical 100% para- and 100% ortho-H+

3 plasmas by
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simultaneously solving,

αDR(83.6%) = .836αDR(100% para) + .164αDR(100% ortho)

αDR(49.1%) = .491αDR(100% para) + .509αDR(100% ortho).

The results are presented in Figure 5.9, along with that of 49.1% para-H+
3 (normal-H2) for compar-

ison. The same extrapolated results can be found if the 74.7% spectrum is used in the calculation
in place of the 83.6% rate coefficients.
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Figure 5.9: Extrapolated dissociative recombination rate coefficients for 100% para and 100% ortho-
H+

3 .

The rate coefficients that were measured were higher than those measured in the 2002 experiment
for all detuning energies, Ed. It is possible that this disparity resulted from inaccurate ion current
measurements in the present experiment. It is unlikely that there were errors in the ion current
measurement for the 2002 experiment because a great deal of effort was expended at that time to
precisely measure this quantity. We were unable to perform current measurements with as great a
precision. Consequently, a correction factor of 0.65 was applied to these results in order to align the
10 eV resonance with that measured in 2002. This resonance has been used in the past to normalize
data because it is not affected by the rotational temperature (see next paragraph) or the spin
modification of the ions [59]. Similar to the systematic error arguments, the consistent application
of this correction factor did not impact the observed differences between the three gas enrichments.
A comparison of the corrected rate coefficients from this experiment, the 2002 experiment, and
results from TSR can be found in Figure 5.10, and are in good agreement above 10−2 eV [59,95].

Below 10−2 eV, the spectrum from this experiment is structurally smoother than the spectrum
observed in 2002. This could be an indication that the ions produced in this experiment were
rotationally hotter than the ions in 2002. The presence of rotationally hotter ions leads to a higher
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Error bars are removed for ease the comparison.

number of Rydberg states. This results in an increase in the number of DR resonances available via
the indirect mechanism (Figure 5.2), which when taken together have the effect of smoothing the
structure that would be present if only a few rotational states were involved [119].

The rotational temperature of the ions in this experiment was measured at 80±20 K, while the
temperature of the ions in 2002 was found to be ∼30 K. It would be surprising if this temperature
difference could change the structure of the spectrum as much as was observed. An inspection of
Tables B.7 and B.8 shows that the population of ortho-H+

3 in the ground state (1,0) is relatively
unperturbed at 80 K. On the other hand, the rotational states of para-H+

3 show a decrease of ∼24%
in the population of the ground state (1,1) between 30 and 80 K (at 30 K, 99% of the para-H+

3 are
in the ground state). It is important to remember that the comparison in Figure 5.10 is between
49.1% para-H+

3 samples, so only ∼12% of the ions should be affected.
Another possible explanation was that the ions were heated by residual collisions with neutral

particles in the ring. The most recent theoretical papers argue that the experimental results (from
both CRYRING and TSR) must have been measured at rotational temperatures upwards of 1000 K,
and that this may have been due to residual heating [119]. Experiments were performed at TSR
specifically to measure this effect, and found that this type of heating could not change the rotational
temperature by more than about 100-200 K [60]. In the end, all that can be said is that the smoothing
observed in these rate coefficient spectra was likely due to a combination of rotationally warm ions
from the expansion source and some rotational heating in the ring. However, the rotational heating
was not to the level being suggested by current theoretical models.

Although the rotational distribution of ions may have been altered during this experiment, the
total number of ions within the ortho and para population sets should not have been affected during
the time in which the ions were stored. First, the para-H+

3 enrichment cannot be modified by reactive
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collisions in a way that will affect the DR measurements. Any reaction between H+
3 and H2 (the

dominant neutral species in the ring) would produce products at far too low an energy to continue
being stored. Second, it was determined that the differences between the ortho and para DR rate
coefficients could not significantly alter the enrichment. The ions were stored for approximately 4 s
after acceleration and before a measurement was taken. The resulting change in para enrichment
due to DR was on the order of -2-3% over this period, which was approximately the same as the
uncertainty in the enrichment value itself. A comparison between the diluted and undiluted para-H2

experiments in Figure 5.8 shows that small changes like this have little effect on the rate coefficient.
Problems with the ion current measurement, rotational heating, and electron energy calibration

prevented a precise measurement of the absolute rate coefficients of the specific spin modifications,
as was our original intent. Nevertheless, we were able to quantify the differences between the rate
coefficients. Improvements to the experiment including a new piezo source (§4.3.2) and some much
needed maintenance at CRYRING should change this in the near future.

5.3.1 Astrophysical implications

The DR rate coefficient by itself is not particularly useful for interpreting astrophysical observations.
To make the measurements relevant, they must be converted to a thermal rate coefficient, α(Te),
which represents the rate of DR with a Maxwellian distribution of electron energies at a given
temperature Te.

The first step in this process is to extract the electron energy-dependent DR cross-section, (σ(Ed))
from the rate coefficient. For energies greater than a few meV, this can be accomplished using the
equation,

σ(Ed) ∼ αDR√
Ed

. (5.7)

For energies lower than a few meV, one must deconvolve the cross section using,

αDR(Ed) =
∫ ∞

0

f(E⊥)σ(E⊥ + Ed)vrel(E⊥ + Ed)dE⊥, (5.8)

where E⊥ is the transverse electron energy (2 meV at CRYRING), vrel is the relative velocity, and
and f(E⊥) is a Maxwell energy distribution,

f(E⊥) =
1

kT⊥
e−E⊥/kT⊥ for E⊥ ≥ 0, (5.9)

in which T⊥ is the transverse electron temperature. This works because the rate coefficient is
an energy weighted cross section integrated over the electron velocity spread. The details of this
unfolding can be found in [128].

With the energy-dependent cross section, it is then possible to calculate the thermal rate coeffi-
cients. This is accomplished by convolving the cross section with a Maxwellian electron distribution
at different temperatures. The equation used for this is,

α(Te) =
8πme

(2πmekbTe)3/2

∫
σ(E)Ee−E/kBTedE. (5.10)

The results for the 49.1% para-H+
3 are presented in Figure 5.11, and the extrapolated thermal
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rate coefficients are plotted in Figure 5.12. The thermal rate coefficient for rotationally cold 49.1%
enriched para-H+

3 (normal-H2) with a 300 K electron distribution was measured to be 6.79± 0.14×
10−8 cm3 s−1, which is in good agreement with the 2002 results where α(Te) = 6.8× 10−8 cm3 s−1.
Although these values were in good agreement, the results from the present experiment diverged to
higher values at lower electron temperatures. A range of thermal rate coefficients are presented in
Table 5.4. The table presents values that are centered around the measured rotational temperature
of the expansion. Temperatures outside of this range are not presented because it is assumed that
electron and ion temperatures will be thermalized in an astrophysical plasma.

3

4

5

6

7

8

9
10

-7

2

3

4

5

6

7

8

 T
he

rm
al

 R
at

e 
C

oe
ff

ic
ie

nt
 α

(T
e)

  (
cm

3 s-1
)

10
2 3 4 5 6 7 8 9

100
2 3 4 5 6 7 8 9

1000
Temperature (K)

Figure 5.11: The thermal rate coefficient α(Te) for 49.1% enriched para-H+
3 (normal-H2).

α(Te) (10−8 cm3 s−1)

% para-H+
3 Te=60 K 80 K 100 K

0 15.5±1.7 13.0±1.5 11.3±1.3
49.1 ± 2.4 19.6±0.3 16.2±0.3 13.9±0.3
100 23.9±0.9 19.6±0.7 16.8±0.6

Table 5.4: Thermal rate coefficients for a range of Te.

At diffuse cloud temperatures, para-H+
3 has a higher dissociative recombination rate with elec-

trons than ortho-H+
3 . This fact is borne out by both the Ed-dependent rate coefficients and the

thermal rate coefficients. As can be seen in Figure 5.12, the para thermal rate coefficient is almost
two times larger than ortho at the lowest electron temperature distributions. Theory predicts that
this ratio goes from a factor of 10 at cold temperatures all the way down to unity at warmer temper-
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Figure 5.12: The extrapolated thermal rate coefficients α(Te) for ortho- and para-H+
3 .

atures [119]. It is important to keep in mind that the thermal rate coefficient values calculated from
this experiment are approximate values only because of the calibration problems described earlier.
However, the calibration errors are assumed to have affected the different measurements equally,
therefore the relative differences that were measured between the rate coefficients should remain
valid.

Due to the fact that the difference in the thermal rate coefficients is relatively small, dissociative
recombination cannot be the source of the fractionation between H+

3 spin modifications observed in
the diffuse interstellar medium. An even more convincing argument for this is the fact that para
dissociative recombination occurs at a faster rate than the ortho, but para-H+

3 is enriched in diffuse
clouds [35].
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Chapter 6

H+
3 + H2 reaction dynamics

Given that H2 and H+
3 are the most abundant molecule and molecular ion in the universe, and that

the reaction between the two occurs at a high Langevin rate, it follows that,

H+
3 + H2 → H2 + H+

3 , (6.1)

is the most common bimolecular reaction [129]. The seemingly fundamental nature of reaction (6.1),
not to mention the simplicity of its constituents, conceals a complexity that will be explored in this
chapter. Theoretical work has been performed to probe some of these details [130,131]. In addition,
experiments have been carried out at room temperature using hydrogen, and at colder temperatures
using deuterium [63, 64, 132]. Still, the behavior of reaction (6.1) under the cold astrophysical
conditions where it almost always occurs has been largely unexplored.

The experiments described here were possible because of the existence of the ortho and para
spin modifications of H2 and H+

3 . These spin modifications were used as tracers, identifiable by
their spectroscopic signatures, to observe how protons are transferred between the reactants. In
the process, a great deal was learned about the steady state conditions of the ortho and para spin
modifications, and how the ortho:para ratio of H+

3 can be used as a probe of interstellar environments.
The symmetry-based derivations for the statistical weights of the ortho and para modifications

for H2 and H+
3 were presented in Chapter 1. The first part of this chapter will show how statistical

calculations can be extended to predict the spin modifications of both species during formation and
subsequent reactions. Current theories about reaction (6.1) will also be presented. Finally, the
experiments used to explore this reaction at room and astrophysical temperatures will be discussed,
along with results and astrophysical implications.

6.1 Theory

The theory behind the H+
3 +H2 reaction is complex and must be treated in separate parts. The first

part of this section will describe how to calculate the spin branching ratios of reaction (6.1) using
statistics. Closely related to this, the statistically-based high temperature model for reaction (6.1)
will be discussed, followed by the quantum mechanical model for cold temperatures.

6.1.1 Statistical weights

The statistical weights of the H2 and H+
3 spin modifications, presented in Chapter 1, are calculated

without consideration of the energy required for the molecule or ion to be in one state or another.
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The weights are based purely on the degeneracies of the levels or, in terms of symmetry, the order
of the various classes and the characters of the representations that describe the symmetry of the
molecule. Neglecting energetic considerations, it is also possible to calculate the statistical outcomes
of a reaction given the spin modifications of the reactants. Using group theory, Quack [130] sought
to do just this in order to examine what happened in reaction (6.1) as the reactants progress to a
completely ‘scrambled’ reaction intermediate, and finally to the product states.

Oka [131] developed a different but equivalent method to account for the distribution of spin
modifications. His method is simpler because it only considers nuclear spin, and employs angular
momentum algebra instead of group theory to calculate the weights of the product spin modifications.
It is important to note that both methods are successful because nuclear spin is essentially conserved
in these reactions (there are hyperfine interactions that prevent nuclear spin from being ‘rigorously’
conserved, but they are very weak [64]).

Angular momentum algebra [133, pg. 99-101] uses the following formula to calculate these
weights,

DI1 ⊗DI2 = DI1+I2 ⊕DI1+I2−1 ⊕ · · · ⊕ D|I1−I2|, (6.2)

where the DI are symbols that represent the nuclear spin modifications. A simple case involves the
calculation of the product weights for the formation reaction,

H+
2 + H2 → H+

4 → H+
3 + H, (6.3)

which was first presented as reaction (1.2) in §1.2. In this reaction, H+
4 represents the intermediate

state. The first step is to calculate the spin species of the reaction intermediate from the reactants
using equation (6.2). Here, the reactant (H2 and H+

2 ) spin modifications could be either ortho (D1)
or para (D0),

(D1 ⊕D0)⊗ (D1 ⊕D0)→ D2 ⊕ 3D1 ⊕ 2D0 (6.4)

Next, a similar calculation is carried out, but this time starting with the product states, H+
3 (where

ortho is represented as D3/2 and para is D1/2), and H (D1/2),

D3/2 ⊗D1/2 → D2 ⊕D1 (6.5)

D1/2 ⊗D1/2 → D1 ⊕D0. (6.6)

The right side of expressions (6.5) and (6.6) both represent the H+
4 intermediate. The total nuclear

spin degeneracies (2I + 1) of these must be balanced with the total spin degeneracy from the right
side of (6.4) which also represents H+

4 . The easiest way to do this is by multiplying expression (6.6)
by a factor of 2,

D3/2 ⊗D1/2 → D2 ⊕D1 (6.7)

2(D1/2 ⊗D1/2)→ 2(D1 ⊕D0). (6.8)

By invoking Frobenius’ reciprocity, these two expressions can be written in reverse with the individual
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product states (representing H+
4 ) going to reactants,

D2 → D3/2 ⊗D1/2

3D1 → (D3/2 ⊗D1/2)⊕ 2(D1/2 ⊗D1/2)

2D0 → 2(D1/2 ⊗D1/2).

The next step is to balance the degeneracies on either side of these equations, which Oka [131] refers
to as ‘balancing the dimensions.’ In this step the nuclear spin degeneracy of each term is calculated,
then that term is divided by (or the opposite side is multiplied by) that value in order to make the
degeneracies equal on both sides of the expression. It is important not to neglect the coefficients
(in this case 3 and 2) in this balancing, meaning that these terms must be treated along with the
degeneracies in order to balance the expression. The results are,

D2 → 5(D3/2 ⊗D1/2/8)

D1 → (D3/2 ⊗D1/2/8)⊕ 2(D1/2 ⊗D1/2/4)

D0 → (D1/2 ⊗D1/2/4).

With these products it is possible to determine the product spin weights for any combination of H2

and H+
2 . One merely needs to substitute these products for the nuclear spin modifications of the

H+
4 intermediate. For example,

ortho-H2 + para-H+
2 = D1 ⊗D0 → D1 → (D3/2 ⊗D1/2/8)⊕ 2(D1/2 ⊗D1/2/4),

indicating that the product distribution from this reaction will be 1/3 ortho-H+
3 +H and 2/3 para-

H+
3 +H. A relationship which is key for this work, and which partially explains the process of making a

highly enriched para-H+
3 plasma used for the dissociative recombination experiments, is the reaction

between pure para species.

para-H2 + para-H+
2 = D0 ⊗D0 → D0 = (D1/2 ⊗D1/2/4),

This shows that a reaction between para-H2 and para-H+
2 will only produce para-H+

3 . These fractions
are then multiplied by the ‘weight’ of the reaction to obtain branching weights. The branching
weights for these two examples, along with the branching weights for the other permutations of
reaction (6.3) are listed in Table 6.1. The terms in the ‘weight’ column represents the total weight

H2 + H+
2 → H+

3 + H Products

Reactants Weight o-H+
3 + H p-H+

3 + H

o-H2 + o-H+
2 9 6 3

o-H2 + p-H+
2 3 1 2

p-H2 + o-H+
2 3 1 2

p-H2 + p-H+
2 1 0 1

Table 6.1: The product spin weights for H2+H+
2 →H+

3 +H2.
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of the particular reactant pathway, based on the reactant nuclear spin degeneracies. For example,
the weight of the ortho-H2+ortho-H+

2 pathway would be (2Iortho + 1)× (2Iortho + 1) = 3×3 = 9.
The values for H+

3 + H2 → H2 + H+
3 (6.1) can be found in almost the same way. The first step

is to calculate the representations for the H+
5 intermediate state,

(D3/2 ⊕ 2D1/2)⊗ (D1 ⊕D0)→ D5/2 ⊕ 4D3/2 ⊕ 5D1/2. (6.9)

The (D3/2⊕2D1/2) on the left side of (6.9) are the H+
3 spin species representations, and (D1⊕D0) are

the H2. The factor of 2 applied to the D1/2 is necessary to account for the fact that there are twice
as many para-H+

3 states as there are ortho-H+
3 (recall from §1.2, the quantum number G = 3n ± 1

for para and G = 3n for ortho). An interesting property of reaction (6.1) is that the reactant and
product sides of the equation both contain H+

3 and H2, so deriving the expressions from the reactants
is equivalent to deriving the expressions from the products. To proceed, it is necessary to break out
the separate products that make up (6.9),

D3/2 ⊗D1 → D5/2 ⊕D3/2 ⊕D1/2

D3/2 ⊗D0 → D3/2

2D1/2 ⊗D1 → 2D3/2 ⊕ 2D1/2

2D1/2 ⊗D0 → 2D1/2.

Next, by balancing the degeneracies and coefficients (balancing the dimensions), the representations
of the H+

5 intermediate can be written as,

D5/2 → 6(D3/2 ⊗D1/12)

D3/2 → (D3/2 ⊗D1/12)⊕ (D3/2 ⊗D0/4)⊕ 2(D1/2 ⊗D1/6)

D1/2 → 2/5(D3/2 ⊗D1/12)⊕ 4/5(D1/2 ⊗D1/6)⊕ 4/5(D1/2 ⊗D0/2).

Using these expressions it is possible to calculate the branching weights for the product spin species
in the same manner as before. The results are presented in Table 6.2.

H+
3 + H2 → H2 + H+

3 Products

Reactants Weight o-H+
3 + o-H2 o-H+

3 + p-H2 p-H+
3 + o-H2 p-H+

3 + p-H2

o-H+
3 + o-H2 12 37/5 1 14/5 4/5

o-H+
3 + p-H2 4 1 1 2 0

2(p-H+
3 + o-H2) 12 14/5 2 28/5 8/5

2(p-H+
3 + p-H2) 4 4/5 0 8/5 8/5

Table 6.2: The product spin weights for H+
3 +H2 →H2+H+

3 .

There is an added complication in the reaction H+
3 + H2 → H2 + H+

3 (6.1). This is because there
are three different pathways by which (6.1) can proceed. Namely, these are the identity (6.10), the
proton hop (6.11), and the proton exchange (6.12).

H+
3 + H̃2 → H+

3 + H̃2, (6.10)
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H+
3 + H2 → H+

3 + H2 Products

Reactants Weight o-H+
3 + o-H2 o-H+

3 + p-H2 p-H+
3 + o-H2 p-H+

3 + p-H2

o-H+
3 + o-H2 12 ID 6/5 0 0 0

Hop 12/5 0 6/5 0
Exch 19/5 1 8/5 4/5

o-H+
3 + p-H2 4 ID 0 2/5 0 0

Hop 0 0 6/5 0
Exch 1 3/5 4/5 0

2(p-H+
3 + o-H2) 12 ID 0 0 6/5 0

Hop 6/5 6/5 3/5 3/5
Exch 8/5 4/5 19/5 1

2(p-H+
3 + p-H2) 4 ID 0 0 0 2/5

Hop 0 0 3/5 3/5
Exch 4/5 0 1 3/5

Table 6.3: The product spin weights for H+
3 + H2 → H2 + H+

3 , broken down by reaction pathway.

H+
3 + H̃2 → HH̃

+

2 + H2, (6.11)

H+
3 + H̃2 → H2H̃

+
+ HH̃, (6.12)

The H̃ initially in the H̃2 are so designated in order to illustrate the differences between the three
reactions. Because there are five protons involved in this reaction, there are 5!/3!2! = 10 possible
outcomes; 1 identity, 3 hops, and 6 exchanges. It is possible to show the contribution from each of
these reaction pathways to the spin modification distributions. The derivation of these path-specific
branching weights is presented in Appendix C. A complete product weight listing, broken down by
identity, hop, and exchange, is presented in Table 6.3.

The data are presented in a different way in Table 6.4. Here, the columns representing either
ortho or para-H+

3 are summed to show the total fraction of H+
3 that will go to one spin modification

or the other, depending on whether the reaction is the identity, hop, or exchange.
There is no H+

3 spin conversion in the identity reaction (6.10). If para-H+
3 combines with para-H2

in the proton hop reaction (6.11) the product H+
3 also emerges without spin conversion. The outcome

of the hop will vary with other reactant spin state modifications as can be seen in Table 6.4. The
exchange reaction can result in the conversion of para-H+

3 to ortho-H+
3 , or vice versa, regardless of

the reactant spin states. This, combined with the properties of the H+
3 formation pathway described

earlier, make the exchange reaction the dominant mechanism by which para-H+
3 is converted to

ortho-H+
3 in a plasma formed from pure para-H2.

It is for this reason that a 100% enriched para-H+
3 plasma was never observed in the dissociative

recombination experiments. This is also why the enriched para-H2 gas was diluted in argon to
generate a highly enriched para-H+

3 plasma. A 1% dilution reduced the number of H+
3 collisions

with H2, thereby reducing the number of exchange reactions that could potentially convert para-H+
3

to ortho-H+
3 .

Clearly the para-H+
3 enrichment of a plasma has a strong dependence on the relative rates of the

hop and the exchange reactions. That being said, the ratio that relates the rate coefficients of the two
reactions α = kHop/kExchange is an important quantity to understand, especially at astrophysical
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Product Fractions
Reactant Spin Modification and Reaction Mechanism ortho-H+

3 para-H+
3

ortho-H+
3 +ortho-H2

Identity → 1 0
Proton Hop → 2/3 1/3
Hydrogen Exchange → 2/3 1/3

ortho-H+
3 +para-H2

Identity → 1 0
Proton Hop → 0 1
Hydrogen Exchange → 2/3 1/3

para-H+
3 +ortho-H2

Identity → 0 1
Proton Hop → 2/3 1/3
Hydrogen Exchange → 1/3 2/3

para-H+
3 +para-H2

Identity → 0 1
Proton Hop → 0 1
Hydrogen Exchange → 1/3 2/3

Table 6.4: A concise summary of product spin fractions for H+
3 + H2 → H2 + H+

3 .

temperatures.

6.1.2 The high temperature model

It is important to emphasize that in this work the development of models for both high and low
temperature conditions serves two purposes. First, the models provide a framework upon which to
build our understanding of reaction (6.1). Second, in the development of both models it was possible
to determine that changes in the observables (such as the ratio of ortho- to para-H+

3 ) can be isolated
to processes occuring in reaction (6.1), versus external processes. This is an important condition if
experimental measurements are going to provide useful information about this reaction.

The underlying assumption in the model and calculations for nuclear spin conversion that were
described in §6.1.1 (referring to the collective model of Quack [130] and Oka [131] which predict the
same results) is that the product nuclear spin states will be formed from combinations of reactant
nuclear spin states according solely to the constraints imposed by the conservation of nuclear spin.
This assumption is valid at high temperatures, where there is sufficient energy to access a large
number of the excited states for each spin modification. With this approach, it is possible to derive
relatively simple equations to describe the relationship between, and time-dependent evolution of,
the fractions of ortho and para H+

3 and H2 in hydrogen plasmas.
To develop expressions that describe the behavior of this system at high temperature, we began

with the rate equations found in [64] for the time dependence of the number densities of the ionic
species. These equations are derived using all of the sources and sinks of the two spin species of H+

3 .
At times the source or the sink is the H+

3 + H2 reaction itself, in which case the branching fractions
from Table 6.4 are used. Destruction mechanisms such as dissociation by electrons are also included.
One can derive similar equations for H2, however, the rate of change for the neutral species is small
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in comparison with the rate of change in H+
3 spin fractions because there is so much more H2 in

comparison (see §4.1.3). The rate equations are,

d

dt
[p-H+

3 ] = k1

(2

3
[o-H2] + [p-H2]

)
[p-H+

2 ] + k1

(1

3
[o-H2] +

2

3
[p-H2]

)
[o-H+

2 ]

+
{

kH

(− 2

3
[o-H2]

)
+ kE(−1

3
[o-H2]− 1

3
[p-H2]

)
(6.13)

− (
kr(para)[e−r ] + γ(para)

)}
[p-H+

3 ]

+
{

kH

(1

3
[o-H2] + [p-H2]

)
+ kE

(1

3
[o-H2] +

1

3
[p-H2]

)}
[o-H+

3 ],

d

dt
[o-H+

3 ] = k1

(1

3
[o-H2]

)
[p-H+

2 ] + k1

(2

3
[o-H2] +

1

3
[p-H2]

)
[o-H+

2 ]

+
{

kH

(2

3
[o-H2]

)
+ kE(

1

3
[o-H2] +

1

3
[p-H2]

)}
[p-H+

3 ] (6.14)

+
{

kH

(− 1

3
[o-H2]− [p-H2]

)
+ kE

(− 1

3
[o-H2]− 1

3
[p-H2]

)

− (
kr(ortho)[e−r ] + γ(ortho)

)}
[o-H+

3 ],

where the rate coefficient and number density terms are,

Term Definition

k1 The rate coefficient for H+
3 formation

kH The rate coefficient for the hop reaction
kE The rate coefficient for the exchange reaction
kr The state-specific rate coefficient for dissociative recombination

[e−r ] The number density of electrons in the energy range of dissociative
recombination (assume [e−r ] ∼ [H+

3 ])
γ The state-specific rate coefficient for H+

3 destruction after am-
bipolar diffusion to the walls of the containment vessel (if one is
in contact with the plasma)

If equations (6.13) and (6.14) are summed, the result is,

d

dt
[total-H+

3 ] = k1[total-H2][total-H+
2 ]

− (
kr(ortho)[e−r ] + γ(ortho)

)
[o-H+

3 ] (6.15)

− (
kr(para)[e−r ] + γ(para)

)
[p-H+

3 ].

Defining the para-H+
3 fraction as,

p3 =
[p-H+

3 ]
[p-H+

3 ] + [o-H+
3 ]

, (6.16)

and using the quotient rule,
d

dt

(
A

B

)
=

B dA
dt −A dB

dt

B2
, (6.17)
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where A = [p-H+
3 ] and B = [p-H+

3 ] + [o-H+
3 ] = [total-H+

3 ], a relationship for the time-dependent
behavior of the para-H+

3 fraction can be written,

d

dt
p3 =

[total-H+
3 ] d

dt [p-H+
3 ]− [p-H+

3 ] d
dt [total-H+

3 ]
[total-H+

3 ]2
. (6.18)

If equations (6.13) and (6.15) are substituted into (6.18), and the term,

p2 =
[para-H2]

[para-H2] + [ortho-H2]
, (6.19)

is used, the simplified result becomes,

d

dt
p3 = k1[total-H2]

{
2
3

[p-H+
2 ]

[total-H+
3 ]

+
1
3

[o-H+
2 ]

[total-H+
3 ]

+
(

1
3
p2 − p3

)
[total-H+

2 ]
[total-H+

3 ]

}

+
{(

kr(ortho) − kr(para)

)
[e−r ] +

(
γortho − γpara

)}
p3 (6.20)

−
{(

kr(ortho) − kr(para)

)
[e−r ] +

(
γortho − γpara

)}
p2
3

+ kH [total-H2]
(

2
3
p2 − p3 +

1
3

)
+ kE [total-H2]

(
1
3
− 2

3
p3

)
.

The steps required to go from equation (6.18) to equation (6.20) are presented in Appendix C. Equa-
tion (6.20) can be further simplified by the elimination of terms that have negligible contributions.
For instance, the dissociative recombination (DR) terms can be removed. As discussed in Chapter
5, there is a difference between the DR thermal rate coefficients of para- and ortho-H+

3 , meaning
kr(ortho) − kr(para) does not cancel, and these rate constants are 2 orders of magnitude greater than
either the hop or exchange rate constants. However, the [e−r ] are ∼ 5 orders of magnitude smaller
than the [total-H2] number densities that are contained in the last two terms on the right hand side
of equation (6.20). Put together, this factor of 1000 difference between the DR terms and those
containing [H2] justifies neglecting the smaller dissociative recombination terms. Regarding γ, there
is no evidence indicating that the rate of destruction by ambipolar diffusion would be different for
para- and ortho-H+

3 , despite being labeled as such for completeness. In fact, the only experiment in
this work for which this could be a factor uses the hollow cathode cell. Amano found that ambipolar
diffusion is not a significant process for the destruction of H+

3 in hollow cathodes [115], so it is logical
to neglect the γ terms as well. Taking what remains and rearranging to isolate the terms containing
p3 gives,

d

dt
p3 =

{
1
3
k1[total-H2]p2

[total-H+
2 ]

[total-H+
3 ]

+
2
3
k1[total-H2]

[p-H+
2 ]

[total-H+
3 ]

+
1
3
k1[total-H2]

[o-H+
2 ]

[total-H+
3 ]

+
2
3
kH [total-H2]p2 +

1
3
kH [total-H2] +

1
3
kE [total-H2]

}
(6.21)

−
{

k1[total-H2]
[total-H+

2 ]
[total-H+

3 ]
+

2
3
kE [total-H2] + kH [total-H2]

}
p3.
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Additional terms can be eliminated from equation (6.21). The efficiency of the formation reaction
(6.3) leads to the condition where [H+

2 ]<<[H+
3 ] [115, 134], which means that any terms containing

the ratio [H+
2 ]/[total-H+

3 ] can be neglected because k1 ∼ kE ∼ kH . This is valid for hollow cathode
experiments, as well as for expansions as determined by mass spectrometry at the CRYRING ion
storage ring in which the number density of H+

2 was measured to be three orders of magnitude less
than H+

3 . The elimination of the [H+
2 ]/[total-H+

3 ] terms results in,

d

dt
p3 =

{
2
3
kH [total-H2]p2 +

1
3
kH [total-H2] +

1
3
kE [total-H2]

}
(6.22)

−
{

2
3
kE [total-H2] + kH [total-H2]

}
p3.

If a steady state condition is assumed where dp3/dt = 0, then (6.22) can be written as,

{
2
3
kH [total-H2]p2 +

1
3
kH [total-H2] +

1
3
kE [total-H2]

}
= (6.23)

{
2
3
kE [total-H2] + kH [total-H2]

}
p3.

After solving for p3, and canceling the [total-H2] this leaves,

p3 =

{
2
3kHp2 + 1

3kH + 1
3kE

}

{
2
3kE + kH

} . (6.24)

Multiplying the top and bottom by 3/kE and substituting α = kH/kE , equation (6.24) becomes,

p3 =
2 α p2 + α + 1

2 + 3 α
. (6.25)

In the high temperature limit, this surprisingly simple equation relates the variables that can be
observed (p2 and p3), and the variable of interest (α). Of course, this depends on the validity of the
dp3/dt = 0 steady state assumption.

To test if steady state is a valid assumption, the differential equation (6.22) can be solved for p3

as a function of time. The form of this differential equation is,

dx

dt
= A−Bx. (6.26)

where x(t) = p3(t). Changing variables to u = A−Bx and du = −Bdx→ dx = −du/B,

−du

Bu
= u → du

dt
= −Bu, (6.27)

the solution to which is,
u(t) = u◦e−Bt, (6.28)

where a reasonable constant of integration, defined at t = 0, is u◦ = (A− Bx◦). Re-substituting A
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and B,

A−Bx(t) = (A−Bx◦)e−Bt → x(t) =
A

B
− (A

B
− x◦

)
e−Bt, (6.29)

and finally inserting the original terms for A and B from equation (6.22),

p3(t) = p3,∞ −
(
p3,∞ − p3,◦

)
e−

(
2
3kE [total-H2]+kH [total-H2]

)
t (6.30)

where p3,∞ is the steady state value of p3 (6.24), and p3,◦ is the initial value of p3. This equation
implies that p3 converges to p3,∞ within a few collision times because the exponential argument
essentially represents the collision rate with H2. Thus, the steady state assumption is valid. In
terms of timescales based on number densities in the hollow cathode and expansion experiments
(see Chapter 4), this would be ∼10 ns in the former and less than 1 ns to ∼ 1 µs in the latter,
depending on the location in the expansion. In contrast, it would take months to achieve H+

3 steady
state in diffuse clouds, and approximately 1 day in dense clouds.

Similar equations can be derived to describe the time-dependent behavior of the H2 spin modi-
fications. Using fractions that can be calculated from Table 6.3,

d

dt
[p-H2] =

{
1
4
kE [o-H+

3 ] +
1
2
kH [p-H+

3 ] +
1
4
kE [p-H+

3 ]
}

[o-H2]

−
{

kH [o-H+
3 ] +

3
4
kE [o-H+

3 ] +
1
2
kH [p-H+

3 ] (6.31)

+
3
4
kE [p-H+

3 ] + kd[e−d ] + k1[H+
2 ] + ki[e−i ]

}
[p-H2]

+
1
3
kr(para)[e−r ][p-H+

3 ] +
1
4
kf [H]2 − 1

2
kc[H+][p-H2] +

1
6
kc[H+][o-H2],

d

dt
[o-H2] =

{
kH [o-H+

3 ] +
3
4
kE [o-H+

3 ] +
1
2
kH [p-H+

3 ]

+
3
4
kE [p-H+

3 ]
}

[p-H2] (6.32)

−
{

1
4
kE [o-H+

3 ] +
1
2
kH [p-H+

3 ] +
1
4
kE [p-H+

3 ]

+ kd[e−d ] + k1[H+
2 ] + ki[e−i ]

}
[o-H2]

+
1
3
kr(ortho)[e−r ][o-H+

3 ] +
3
4
kf [H]2 +

1
2
kc[H+][p-H2]− 1

6
kc[H+][o-H2],

where the new rate coefficient and number density terms are,

Term Definition

kd The rate coefficient for H2 dissociation with electrons
[e−d ] The number density of electrons with energy to dissociate H2

ki The rate coefficient for the ionization of H2

[e−i ] The number density of electrons with energy to ionize H2

kc The rate coefficient for the reaction H++H2

kf The rate coefficient for the formation of H2 from atomic H

81



The factor of 1/3 applied to the H+
3 dissociative recombination source term comes from the fact

that only 1/3 of H+
3 dissociations result in a product H2 (see §5.1). Additionally, conservation of

nuclear spin requires that para-H2 can only be formed from para-H+
3 , and a parallel argument exists

for ortho-H2. The factors 1/4 and 3/4 that appear in front of the kf terms represent the ratio in
which para- and ortho-H2 will form from the recombination of H atoms. Finally, the coefficients for
the kc terms arise from conservation of nuclear spin in the reaction H++H2. Summing equations
(6.31) and (6.32) gives,

d

dt
[total-H2] =

1
3
(
kr(ortho)[o-H

+
3 ] + kr(para)[p-H+

3 ]
)
[e−r ] + kf [H]2 − kd[e−d ][total-H2]

− k1[H+
2 ][total-H2]− ki[e−i ][total-H2]. (6.33)

Using the quotient rule (6.17) in a similar derivation as was done for dp3/dt, the time dependence
of p2 is found to be,

d

dt
p2 =

(
1
4
kE [total-H+

3 ] +
1
2
kH [p-H+

3 ] +
1
6
kc[H+]

)(
1− p2

)

−
(

3
4
kE [total-H+

3 ] + kH [o-H+
3 ] +

1
2
kH [p-H+

3 ]− 2
3
kc[H+]

)
p2 (6.34)

+
(

1
3
kr(para)[e−r ][p-H+

3 ] +
1
4
kf [H]2

)
1

[total-H2]

−
(

1
3
(
kr(para)[p-H+

3 ] + kr(ortho)[o-H
+
3 ]

)
[e−r ] + kf [H]2

)
p2

[total-H2]
.

As with dp3/dt, equation (6.34) can be simplified by the elimination of terms. The kc terms describing
the contribution or removal of para-H2 by reaction with H+ can be neglected by making order of
magnitude arguments. In the expansion experiment, the number density of H+

3 was observed to
be 30× greater than that of H+. The ratio of these ions was not measured in the hollow cathode
cell, however, Saporoschenko [134] and Albritton et al. [135] found an order of magnitude difference
between the more abundant H+

3 ion and H+ in a plasma source similar to the hollow cathode. This,
combined with the fact that kc is an order of magnitude smaller than either kE or kH [8,64], indicates
that the kc terms can be neglected. These assumptions, and therefore this model, cannot be used
for diffuse cloud conditions where the abundance of H+ is four orders of magnitude greater than
that of H+

3 [43]. However, it is applicable under dense cloud conditions where the abundance of H+

is estimated to be an order of magnitude less than H+
3 [136].

The two H2 formation terms (kf [H]2) can also be eliminated using order of magnitude compar-
isons. The number density of atomic H is slightly greater than that of H+

3 because H is primarily
formed along with H+

3 in reaction (6.3), while contributions from other pathways such as the dis-
sociation of H2 by electrons will increase this value by an order of magnitude at most [64]. Based
on [H] calculated from H+

3 number densities measured in the expansion and the hollow cathode cell
(see Tables 4.2 and 4.5), [H]2/[total-H2] will typically be 2-4 orders of magnitude smaller than [H+

3 ].
In addition, the rate coefficient for the gas phase formation of H2, kf , is smaller than 3× 10−17 cm3

s−1 at temperatures below 1000 K [137]. It is important to note that this value for kf does not
apply for the hollow cathode exeriments, where there is a large surface upon which recombination
can take place. This is a special case that will be addressed in §6.2.1. In dense clouds, atomic H is
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more abundant than in the laboratory plasmas described here [138], however, the formation of H2

on grain surfaces has a small impact on p2 due to the relatively small value of kf (∼ 1× 10−17 cm3

s−1).
The dissociative recombination terms (kr) can also be neglected if one considers the fact that

the ratio [e−r ]/[total-H2] is ∼ 1 × 10−5. This is calculated using the number densities of H2 and
H+

3 taken from Tables 4.2 and 4.5, along with the assumption that [e−r ] ∼ [H+
3 ] because H+

3 is the
dominant ion in the plasma. Even with a 2 order of magnitude difference between the rate coefficients
(kH ∼ .01kr and kE ∼ .01kr), the dissociative recombination terms are 1000 times smaller, and
can be eliminated from the expression. This certainly applies in dense clouds where the dominant
destruction mechanism for H+

3 is by reaction with CO [32]. The kr and [e−r ] terms are simply replaced
by terms representing reactions with CO. Although the dense cloud ratio [CO]/[H2]∼ 10−4 is larger
than the laboratory plasma estimate for [e−r ]/[H2]∼ 10−5, the rate coefficient for the reaction with
CO is kCO = 2 × 10−9 cm3 s−1, which is smaller than kr. After eliminating these terms, equation
(6.34) can be simplified to,

d

dt
p2 =

(
1
4
kE [total-H+

3 ] +
1
2
kH [p-H+

3 ]
)

(6.35)

−
(

kE [total-H+
3 ] + kH [total-H+

3 ]
)

p2.

Euler’s method was used to integrate equation (6.35), and the results are shown in Figure 6.1. The
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Figure 6.1: The time dependence of para-H2 (p2) and para-H+
3 (p3) enrichments, as predicted by the

high temperature model.

model always predicts a normal-H2 steady state, with a para-H+
3 fraction (p3) that changes with

the evolving para-H2 enrichment. The figure also shows that a decrease in α only shortens the
time constant for the decay to a normal-H2 steady state. These simulations were run using the
number densities of the hollow cathode cell (described in §4.2)). When the model was run using the
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conditions of the expansion source (§4.1), the para-H2 enrichment (p2) took much longer to reach
steady state.

The relationship between the para-H+
3 fraction (p3) and the para-H2 fraction (p2) is depicted

in Figure 6.2 for different values of α. The higher the α, the higher the p3 for a given p2. When
p2 = 0.25 (representing normal 3:1 H2), the fraction p3 is always equal to 0.5 no matter what the
value of α.
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Figure 6.2: Relationship between p2 and p3 based on the high temperature model.

Uy et al. [63], and Cordonnier et al. [64], were the first to experimentally observe the spin selection
rules in a hydrogen discharge at ∼300-400 K. They did so by observing the fraction para-H+

3 (p3)
when an enriched para-H2 was used as the precursor gas instead of normal H2. In both papers, the
measurements indicated that the proton hop and hydrogen exchange reactions occurred with a ratio
α = kHop/kExchange = 2.4.

Even before the the studies done in [63] and [64], Gerlich performed similar experiments (at least
in objective) using D+

3 and H2 in a merged beam apparatus, which was thought to achieve tempera-
tures as low as 20 K [132]. His experiments were carried out using a spin-normal hydrogen/deuterium
gas mixture versus pure para-H2, and demonstrated a temperature dependence of kHop/kExchange.
This was determined from a change in the ratio of H2D+ to HD+

2 , corresponding to a change in the
relative dominance between the hop (6.11) and exchange (6.12). Gerlich’s results indicated a trend
towards the limit of α = kHop/kExchange = 0.5 at the coldest temperatures, which is the statistical
result. Nevertheless, the applicability of Gerlich’s work to a purely hydrogenic plasma is limited
as exemplified by differences in energetics. In contrast to the thermoneutral H+

3 +H2 reaction, the
reaction involving deuterated species is endothermic.
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6.1.3 Low temperature model

Some of the assumptions that make the statistical model valid at higher temperatures do not apply
at the colder temperatures of the interstellar medium. In these regimes there is insufficient energy
for certain spin-conserving, but energetically unfavorable reactions to occur. Reactions in which
para-H2 must be converted to ortho-H2 are such an example, because the energy difference between
the ground states of these species is 118.5 cm−1 (170 K). A quick inspection of Table 6.3 shows there
are many such reactions in which this type of H2 conversion must occur in order to conserve nuclear
spin.

As a result, the high temperature model appears ill-equipped to explain the H+
3 + H2 reaction

in cold laboratory plasmas or in the interstellar medium. Park and Light [139] developed a model
that accounts for the energetics of reaction (6.1), especially at cold temperatures. Their model
calculates the energy available to the different reactant species (at a given temperature), and uses
these to generate so-called cumulative reaction probabilities from which reaction rate coefficients can
be derived. The model itself was provided to us by K. Park in the form of a Windows executable with
input parameters of kinetic and rotational temperature and α = kH/kE . The model’s output is in
the form of rate coefficients for the different permutations of the ortho/para-H+

3 and ortho/para-H2

reactant and product states. The rate coefficients describe the rates at which ground-state reactants
go to all product states (to include excited). For example, kpopo represents the rate coefficient for
the reaction p-H+

3 + o-H2 → p-H+
3 + o-H2. Because the output of the model was in the form of

multiple rate coefficients, it was necessary to derive new equations to represent the time dependent
relationship between p3 and p2. The detailed rate equations are,

d

dt
[p-H+

3 ] = k1

(2

3
[o-H2] + [p-H2]

)
[p-H+

2 ] + k1

(1

3
[o-H2] +

2

3
[p-H2]

)
[o-H+

2 ]

+
{(

koopp + koopo)[o-H2] +
(
koppp + koppo

)
[p-H2]

}
[o-H+

3 ] (6.36)

−
{(

kpoop + kpooo

)
[o-H2] +

(
kppop + kppoo

)
[p-H2]

}
[p-H+

3 ]

− kr(para)[e−r ][p-H+
3 ],

d

dt
[o-H+

3 ] = k1

(1

3
[o-H2]

)
[p-H+

2 ] + k1

(2

3
[o-H2] +

1

3
[p-H2]

)
[o-H+

2 ]

+
{(

kpoop + kpooo)[o-H2] +
(
kppop + kppoo

)
[p-H2]

}
[p-H+

3 ] (6.37)

−
{(

koopp + koopo

)
[o-H2] +

(
koopp + koppo

)
[p-H2]

}
[o-H+

3 ]

− kr(ortho)[e−r ][o-H+
3 ].

Equations (6.36) and (6.37) use the same H+
3 formation terms as the high temperature model. The

terms involving γ were not included because of the arguments presented in the previous section.
Summing (6.36) and (6.37) together gives a result for [total-H+

3 ] that is nearly identical to that
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found at high temperature,

d

dt
[total-H+

3 ] = k1[total-H2][total-H+
2 ]

− kr(ortho)[e−r ][o-H+
3 ] (6.38)

− kr(para)[e−r ][p-H+
3 ].

Subsituting (6.36) and (6.38) into the quotient rule equation (6.17), and simplifying as before gives
the result,

d

dt
p3 = k1

(
2
3
[o-H2] + [p-H2]

)
[p-H+

2 ]
[total-H+

3 ]
+ k1

(
1
3
[o-H2] +

2
3
[p-H2]

)
[o-H+

2 ]
[total-H+

3 ]

+
{(

koopp + koopo)[o-H2] +
(
koppp + koppo

)
[p-H2]

}(
1− p3

)

−
{(

kpoop + kpooo

)
[o-H2] +

(
kppop + kppoo

)
[p-H2]

}
p3 (6.39)

− kr(para)[e−r ]p3 − kr(ortho)[e−r ]
(
1− p3

)
p3 − kr(para)[e−r ]p2

3

− k1[total-H2][total-H+
2 ]p3

[total-H+
3 ]

.

Although the form of dp3/dt and the rate coefficients have changed between the high and low
temperature models, the number densities and actual physical conditions of the plasmas have not.
As a result, certain terms can be neglected just as they were for the previous model. For instance,
because the number density of electrons, [e−r ], is at least 5 orders of magnitude smaller than [H2],
the dissociative recombination terms can be neglected. This leaves the equation,

d

dt
p3 = k1

(
2
3
[o-H2] + [p-H2]

)
[p-H+

2 ]
[total-H+

3 ]
+ k1

(
1
3
[o-H2] +

2
3
[p-H2]

)
[o-H+

2 ]
[total-H+

3 ]

+
{(

koopp + koopo)[o-H2] +
(
koppp + koppo

)
[p-H2]

}(
1− p3

)

−
{(

kpoop + kpooo

)
[o-H2] +

(
kppop + kppoo

)
[p-H2]

}
p3 (6.40)

− k1[total-H2][total-H+
2 ]p3

[total-H+
3 ]

.

By again assuming a steady state condition for para-H+
3 (dp3/dt = 0) and solving for p3, a relation-

ship between the p3 and the para-H2 fraction (p2) can be found.

p3 =

(
koppo

)
[p-H2] +

(
koopp + koopo

)
[o-H2] + k1ζp

(
2
3 [o-H2] + [p-H2]

)
+ k1ζo

(
1
3 [o-H2] + 2

3 [p-H2]
)

k1ζtot[total-H2] +
(
koppo + kppoo

)
[p-H2] +

(
koopp + koopo + kpoop + kpooo

)
[o-H2]

,

(6.41)
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where,

ζp =
[p-H+

2 ]
[total-H+

3 ]

ζo =
[o-H+

2 ]
[total-H+

3 ]

ζtot =
[total-H+

2 ]
[total-H+

3 ]
.

The terms koppp and kppop have been eliminated from equation (6.41) because these pathways do
not conserve nuclear spin (Table 6.3). In order to use the relationship p2 = [p-H2]/[total-H2], the
top and bottom of equation (6.41) are divided by [total-H2]. The result is,

p3 =

(
koppo

)
p2 +

(
koopp + koopo

)(
1− p2

)
+ k1ζp

(
2
3

(
1− p2

)
+ p2

)
+ k1ζo

(
1
3

(
1− p2

)
+ 2

3p2

)

k1ζtot +
(
koppo + kppoo

)
p2 +

(
koopp + koopo + kpoop + kpooo

)(
1− p2

) .

(6.42)
As was the case in the high temperature model, the ζ terms containing the ratio [H+

2 ]/[H+
3 ] can be

neglected because [H+
2 ] << [H+

3 ]. Although the average kxxxx coefficient is an order of magnitude
smaller than k1, the contribution of the latter (with the factor of [H+

2 ]/[H+
3 ]) is less than 1%. With

the elimination of these terms, the final form of the equation is,

p3 =

(
koopp + koopo

)
+

(
koppo − koopp − koopo

)
p2(

koppo + kppoo

)
p2 +

(
koopp + koopo + kpoop + kpooo

)(
1− p2

) . (6.43)

Using equation (6.43) along with the rate coefficients calculated by the low temperature model, the
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Figure 6.3: Relationship between p2 and p3 based on the low temperature model.
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relationship between p2 and p3 is depicted for various temperatures and α (see Figure 6.3). This
figure shows that the para-H+

3 fraction (p3) at a given para-H2 fraction (p2) increases with α. The
shape of the curve has an even stronger dependence on temperature, with the relationship between
p3 and p2 becoming more linear (similar to the high temperature model) at the model’s limiting
temperature of 160 K.

Similarly, the system of rate coefficients can be used to find a cold temperature dp2/dt. The
derivation begins with the detailed rate equations for the spin modifications of H2,

d

dt
[p-H2] =

{(
koopp + kooop

)
[o-H2]

}
[o-H+

3 ] +
{(

kpoop + kpopp

)
[o-H2]

}
[p-H+

3 ]

−
{(

koppo + kopoo

)
[p-H2]

}
[o-H+

3 ]−
{(

kppoo + kpppo

)
[p-H2]

}
[p-H+

3 ] (6.44)

− kd[e−d ][p-H2]− k1[H+
2 ][p-H2]− ki[e−i ][p-H2] +

1
3
kr(para)[e−r ][p-H+

3 ]

+
1
4
kf [H]2 − 1

2
kc[H+][p-H2] +

1
6
kc[H+][o-H2],

d

dt
[o-H2] =

{(
koppo + kopoo

)
[p-H2]

}
[o-H+

3 ] +
{(

kppoo + kpppo

)
[p-H2]

}
[p-H+

3 ]

−
{(

koopp + kooop

)
[o-H2]

}
[o-H+

3 ]−
{(

kpoop + kpopp

)
[o-H2]

}
[p-H+

3 ] (6.45)

− kd[e−d ][o-H2]− k1[H+
2 ][o-H2]− ki[e−i ][o-H2] +

1
3
kr(ortho)[e−r ][o-H+

3 ]

+
1
4
kf [H]2 +

1
2
kc[H+][p-H2]− 1

6
kc[H+][o-H2],

where the first two lines on the right hand sides of equations (6.44) and (6.45) represent the changing
H2 enrichment due to the reaction with H+

3 . The next five terms, respectively, represent losses to
electron impact dissociation, formation of H+

3 , and ionization, and gains due to the dissociative
recombination of H+

3 , and formation from atomic hydrogen. The last two terms account for the
changing enrichment due to reactions with H+. These equations, along with the quotient rule
(6.17), can be used to solve for dp2/dt. After simplification, the insignificant terms (kr, kf , and kc)
are eliminated as was done for equation (6.34) and the resulting differential equation for dp2/dt is,

d

dt
p2 =

{(
koopp + kooop

)
(6.46)

− p2

(
koopp + kooop + koppo + kopoo

)− p3

(
koopp + kooop − kpoop − kpopp

)

+ p2p3

(
koopp + kooop − kpoop − kpopp + koppo + kopoo − kppoo − kpppo

)}
[total-H+

3 ].

Instead of solving the differential equation (6.46), the function was numerically integrated using
Euler’s method. The steady state approximation and equation (6.43) were used to update p3 as
the value of p2 evolved. Continuing use of the steady state approximation for the value of p3 was
reasonable because the solution for (6.40) after the elimination of negligible terms is,

p3(t) = p3,∞ −
(
p3,∞ − p3,◦

)
e−

{(
koopp+koopo+kpoop+kpooo

)[
o-H2

]
+
(
koppo+kppoo

)[
p-H2

]}
t,
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Figure 6.4: The time dependence of p2 and p3 at low temperature.

the derivation of which is similar to that of (6.30). Once again, the value of p3 will converge to a
steady state in the timeframe for a collision with H2, which is on the order of 10 ns to µs.

Three simulations, all with a starting p2=0.99 are presented in Figure 6.4. The simulations were
run at different temperature conditions but with α=0.78 (changes in α have a smaller effect on the
result than do changes in temperature). The solid or dashed lines represent a data pair (p2 and p3)
that propagate at the same temperature. The dotted-dashed lines are the results from a model run
at 30 K, but using a form of dp2/dt that included kc[H+] terms (discussed below). The slow change
in p3 represents its response to the changing value of p2. Clearly, according to the low temperature
model, temperature drives both the H2 and H+

3 enrichments. The predicted curves seem to indicate
that the fraction p3 follows the fraction p2. The p2 steady state value calculated by the model for
30 K closely matches the predicted thermal enrichment of para-H2 for that temperature, 97%. The
steady state value of 27.7% at 160 K does not match the thermally predicted value of 24.4%.

The simulation using the form of dp2/dt that included the kc[H+] terms was run in order to
test the effect of an abundance of H+ on the values of p2 and p3. Although the kc terms were
neglected because of order of magnitude arguments, the test was run because protons are likely to
have the strongest influence on p2 outside of reaction (6.1) in the interstellar medium. Recall that
protons outnumber H+

3 ions in diffuse clouds, but are less abundant in dense clouds. The [H+] was
assumed to be one order of magnitude less than the [H+

3 ], much as is predicted for dense clouds.
The inclusion of these terms decreased the overall p2 by ∼4%, with a greater decrease for p3. There
was an imperceptible change from the plotted results when running a simulation like this for the
160 K condition. Despite the influence of H+, the reaction with H+

3 has a stronger, temperature
dependent influence on the fraction of para-H2.

The process of deriving the models showed that the interactions of H+
3 and H2 are the primary
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factors that govern the observables p2 and p3. That is, experimental measurements in hydrogen
plasmas can be used to obtain information about reaction (6.1), including the value of α = kH/kE .
The experiments in this work were designed to explore the relationship between p2 and p3 at low
temperature, thereby obtaining information that will help shed light on the temperature regions
where the two models are applicable, gain insight into the behavior of α with temperature, and
provide an understanding of how the spin modifications are affected.

6.2 Experiments

Two sets of experiments were performed to understand reaction (6.1), one set that consisted of
measurements over a wide temperature range in the hollow cathode cell described in §4.2 and the
other set in a supersonic expansion produced by the source described in §4.1. Each will be discussed
in turn below.

6.2.1 Hollow cathode cell experiments

In order to better understand the ratio α = kHop/kExchange as well as reaction (6.1) at astrophys-
ical temperatures, the number densities of para- and ortho-H+

3 were spectroscopically measured for
different para-H2 feed gas enrichments. The hollow cathode cell was used to generate plasmas over
a wide range of temperatures (as described in Chapter 4); 310, 180, and 130 K. The experiments
and results at each of these temperature conditions will be described below.

A 200 µs, 1 kV discharge pulse was sent to the anode of the hollow cathode cell once every 5
seconds, generating the conditions described in §4.2.3. Direct absorption spectroscopy was performed
using a White multipass arrangement as described in §3.3.2. The R(1, 0) and R(1, 1)u transitions
of ortho- and para-H+

3 were measured separately by tuning DFG system I to one of the transition
wavelengths, and measuring the intensity signal on a liquid nitrogen-cooled DC InSb detector both
before and during the pulses. The resulting data from this arrangement were,

−ln
It

I◦
= αL, (6.47)

where It is the transmitted intensity and I◦ is the initial intensity. In all cases, the data analysis
compared the ratios of different transitions (e.g. R(1, 1)u with R(1, 0)), therefore the length terms
(L) cancelled because the measurements were always taken over the same path length. It is important
to emphasize that there are two separate α being discussed in this chapter. One, just mentioned,
describes the absorbance of mid-IR electromagnetic radiation, and the other is the ratio of the rate
constants for the hop and exchange reactions. The difference between the two should be contextually
clear throughout the chapter.

Measuring the R(1, 0) and R(1, 1)u absorption peaks was accomplished by one of two methods.
In the first method, the DFG was tuned to a starting frequency that was within .005 cm−1 of
the transition’s center frequency. The operator would then initiate the locally-designed LabView
code (B. Siller and B. Tom), which would acquire data for a total of 10 discharge pulses. After 10
measurements were collected, the data from the pulses were averaged by the acquisition routine and
saved as a text file which was then imported into the IGOR application for further analysis.
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Using IGOR, the absorption data were normalized by the initial intensity (I◦) in equation (6.47),
and plotted. The laser frequency was then incremented by 30 MHz (.001 cm−1), and data from
another 10 pulses would be collected and averaged. The center frequency was identified by the
operator as the point where absorption was greatest after a series of points had been collected. This
process would continue until ∼3 measurements had been taken at the center frequency. After the
pulse data had been acquired for both the R(1, 0) and R(1, 1)u transitions, the data were processed
by another IGOR function in order to find the point in the pulse that was to be used for data
analysis (see Figure 6.5). First, the function would select a maximum closest to the onset of an
R(1, 1)u pulse and compare this with a point at the same time location in the R(1, 0) pulse. The
function would repeat the measurement between the R(1, 1)u and R(1, 0) pulses, this time using the
maximum of the R(1, 0) peak as the comparison point.

The next step in the analysis was to correct the measured absorptions with their respective
transition dipoles (see Table 1.5). This step was accomplished in order to approximate the number
density of the ortho and para spin species,

α

|µ|2 ∝ n. (6.48)

These absorption data were used in the equation,

p3 =
[para-H+

3 ]
[total-H+

3 ]
=

∑all para
i ni∑all para

i ni +
∑all ortho

i ni

, (6.49)

where the
∑all states

i ni come from applying the Boltzmann correction for a given temperature as in
§5.2.1. The Boltzmann correction terms used in this chapter are tabulated in Appendix B. Although
the temperature was measured over the entire discharge pulse as described in §4.2.3, it was only the
temperature at the beginning of the pulse (near the point at which the pulse datum was taken) that
was used to determine which Boltzmann correction term to use.

Finally, these results were averaged. With 2-3 measurements taken at the center frequency of
the R(1, 0) and R(1, 1)u transitions, there were 4-9 separate calculations of p3. These p3 were then
averaged to calculate an overall p3 for a measurement at a given para-H2 enrichment (p2).

The second method used to collect data employed an automated scan, however, this method
was only used in the 130 K experiments. In this method, the rate at which the laser was stepped
was synchronized with the rate at which the digital delay generator triggered the discharge pulses
in the hollow cathode cell. The rate of the scan was typically ∼6 MHz s−1. During the course of
the scan, the data acquisition software was programmed to select the pulse maximum much as the
IGOR function did in the manual scanning method. The software then normalized and saved these
results in a text file for later use. After the data were acquired for both R(1, 0) and R(1, 1)u, the
absorption maxima at the center frequencies of the scanned peaks were compared in the manner
described above to find p3.

As an added precaution with both methods, measurements were taken at the maximum near the
beginning of the pulse because this is where the para-H2 enrichment was most accurately known.
The para-H2 enrichment changes by dissociation of H2 by electron impact, followed by atomic re-
combination on the cathode walls (as mentioned in §6.1.2). The dissociation takes place by way of
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the highly efficient reaction,
H2 + e− → H + H + e−, (6.50)

in which dissociation occurs due to highly energetic electrons emitted from the cathode (40 eV) and
secondary electrons ejected from H2 ionization events. The atomic H are then free to migrate to
the cathode surface where they can recombine to form H2. This results in the thermalization of
the H2 population to a normal enrichment (3:1) because of the roughly 4.5 eV of energy that is
released when H atoms recombine to form H2. Any experiment in the hollow cathode cell involving
para-enriched feed gas will exhibit a changing para-H2 enrichment due to recombination on the walls.
There were no measurements taken in this experiment to quantify the rate of para-H2 conversion in
the hollow cathode cell. As such, a model from [64] was used. This model describes an exponential
decay,

[
para−H2

]
=

(
1− 3

4
(
1− e−t/τ

))[
para−H2

]
◦. (6.51)

The time constant (τ) was calculated from observations made in [64], and is equal to 3.5 ms. In
order to determine a ‘correction factor’ (equal to the term in front of the [para-H2] on the right
hand side of equation (6.51)), it was necessary to determine the nominal time from plasma turn-on
to measurement in this experiment. This time was measured for each of the collected samples, and
is depicted in Figure 6.5. The average time (t) was 48 µs, which when used in equation (6.51) yields
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Figure 6.5: A typical discharge pulse; the nominal time from discharge turn-on to the measurement
point is depicted.

a value of 0.9898. Each starting para-H2 fraction was multiplied by this correction factor in order to
account for the back conversion of para-H2 due to recombination on the walls of the hollow cathode.
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The rise time of the signal seen in Figure 6.5 can be attributed to two factors; the time it took for
the plasma to fill the cathode, and the response time of the detector. The primary contributor was
the detector response time, which was ∼ 35 µs.

The water-cooled 310 K experiments were the first to be performed in this hollow cathode cell,
with the intent of duplicating the results from [63, 64] that measured α = kH/kE = 2.4. Averaged
scan spectra, acquired using the manual method, are presented in Figure 6.6. Experimental evidence
for the predicted nuclear spin selection rules is given by an increasing para-H+

3 absorption and a
decreasing ortho-H+

3 absorption with higher enrichments of para-H2.
The results of the 310 K experiments are presented in Table 6.5, along with the values calculated

for α using equation (6.25). An α was not calculated for the normal-H2 (24.9%) plasma because

% para-H2 % para-H+
3 α

99.0 ± 0.5 88.2 ± 0.3 2.30 ± 0.08
98.9 ± 0.5 88.2 ± 0.2 2.30 ± 0.05
80.9 ± 2.5 78.2 ± 0.2 2.07 ± 0.04
75.7 ± 0.7 76.5 ± 0.2 2.42 ± 0.10
65.9 ± 2.5 68.9 ± 0.3 1.50 ± 0.05
44.1 ± 0.7 58.1 ± 0.4 1.16 ± 0.11
25.1 49.9 ± 0.4 -

α (average(p2=99%,98.9%,75.7%)) 2.34 ± 0.09

α (high temp., best fit) 2.15 ± 0.15

Table 6.5: The para-H+
3 enrichment and α calculated for different para-H2 enrichments in the 310 ±

20 K hollow cathode discharge. The average α and the best fit α for the high temperature model
are also presented. The uncertainties are 1 σ.

with this para-H2 enrichment, any value of α will form a plasma in which the para- and ortho-H+
3

populations are produced in a 1:1 ratio. As in Chapter 5, the p3 errors were calculated by combining
the standard deviation of individual measurements with the standard deviation that arose from
applying the Boltzmann correction over a range of ±20 K. The α errors were statistical, originating
from the population of p3 values, or from the linear fit in the case of α (high temp., best fit).

An analysis of variance test (ANOVA) was performed to determine if the α listed in Table 6.5
came from the same population of data, which would mean that they could be averaged to find
a single mean value for α. The details for performing an ANOVA test are described in [141, pg.
558-565, Table 8]. In short, given a known number of populations that are each made up of a known
number of samples, one can calculate if the populations are statistically consistent with having come
from a single large population with a single mean. For the 310 K experiments, there were 6 separate
populations of data representing 6 different para-H2 enrichments, and there were 48 samples across
all of these populations. The null hypothesis was that all populations had the same mean value for
α (H◦ : µ99.0% = µ98.9% = µ80.9% = µ75.7% = µ65.9% = µ44.1%, where the µ are the mean values
of the α populations) with the probability of a false positive being 0.01. The test failed, meaning
that these populations did not comprise some larger population. Upon further analysis, the test
indicated that µ99.0% = µ98.9% = µ75.7% 6= µ80.9% 6= µ65.9% 6= µ44.1%.

The α calculated from the 80.9% enriched para-H2 sample appeared to be an outlier because it
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Figure 6.6: R(1, 1)u and R(1, 0) absorption data taken in the hollow cathode at 310 ± 20 K. The %
labels indicate the para-H2 enrichment of the feed gas.

was bounded by measurements that the ANOVA test indicated are part of the same population.
Although there were no abnormal conditions noted at the time of the experiment, the apparent
inversion with the 75.7% R(1, 1)u data, as can be seen in Figure 6.6, indicates the data may have
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been inaccurate. However, another possible explanation was that the 75.7% enriched sample was the
outlier. This sample was prepared as an ∼80% enriched sample, but thermal conductance indicated
it was at 75.7% enrichment. If there was a mis-calibration between the thermal conductance and
NMR methods at the time, and the para-H2 enrichment was in reality closer to 80%, then the α for
this datum would actually be ∼1.7.

In Figure 6.7 the measured fractions are plotted along with a line of best fit. The fit indicates
that α = 2.15± .15 based on all of the points taken at 310 K. This is influenced by the 66% and 44%
enriched points which show a departure from linearity that might indicate behavior more in line
with low temperature model predictions. It is interesting to note that the average α as calculated
from the higher enrichments is in good agreement with the α measured with only highly enriched
para-H2 in [64], yet when the lower enriched points are taken into consideration, the measured α is
lower. The intermediate enrichment points may be indicating a departure from high temperature
behavior, even at 310 K. There is insufficient data to be certain.
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Figure 6.7: Measured para-H+
3 enrichments at 310 ± 20 K plotted along with a high temperature

model for α=2.15.
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The data from the liquid nitrogen-cooled experiments were collected in the same fashion as
those from the 310 K experiments. The o-ring seals began to leak at cryogenic temperatures,
which limited the number of samples that were acquired. In addition, it wasn’t until after the
experiment was completed that data analysis indicated that measurements were taken in two separate
temperature regimes. The two temperatures resulted from different cryogen flow rates, with the
warmer temperatures occurring immediately after the liquid N2 dewar had been re-filled. Most
likely there hadn’t been sufficient time for an adequate backing pressure to build. The first data to
be discussed are those measured when the plasma temperature was 180 ± 10K.

The 180 K data included 99%, 82%, and 25% para-H2 enriched test points. Averaged pulses are
shown in Figure 6.8. It is interesting to observe that the overall absorption is increased with respect
to the 310 K pulses (Figure 6.6) due to the decrease in Doppler broadening as well as the higher
proportion of ions in the ground states. The results for p3 as well as α are presented in Table 6.6,
with the error calculations being the same as described for the 310 K results.

% para-H2 % para-H+
3 α

99.0 ± 0.5 86.0 ± 0.2 1.81 ± 0.03
81.5 ± 0.7 74.9 ± 0.3 1.30 ± 0.03
25.1 50.7 ± 0.4 -

α (high temp., best fit) 1.59 ± 0.19

α (low temp., best fit) 2.0

Table 6.6: The para-H+
3 enrichment and α calculated for different para-H2 enrichments in the 180 ±

10 K hollow cathode discharge. Best fit α’s for high and low temperature models are also presented.
The uncertainties are 1 σ.

An ANOVA test was run for the α values in this data set, and the result indicated that the α

are not from the same population. This was not surprising because the α were calculated using
equation (6.25) which is a high temperature model result. Figure 6.9 shows the measured data
along side predicted results from both the low and high temperature models. The data appear to
depart from the linear high temperature model, especially at the 82% enrichment point, and are best
fit by the low temperature model run using 160 K and α=2.0 input parameters. Because the low
temperature model is not optimized to run at 180 K, there is uncertainty in this value. Additionally,
the experimental data and the low temperature model do not correlate for the normal-H2 test point.
Table 6.6 lists values for α derived from a best fit for both the high and the low temperature models.

The data acquired at 130± 10 K included test points at 99%, 90%, 75%, 64%, and normal para-H2

enrichments. One 99% test point, as well as the 75% and normal test points were acquired using the
scan acquisition technique described above. Figure 6.10 shows the pulses collected using the manual
technique. Again, the intensity of the absorptions increased because of the colder temperatures, and
can most easily be seen by comparing the 99% absorption between Figures 6.10 and 6.8.

Figure 6.11 shows the results from the scan technique. A comparison of the R(1, 1)u peaks in
Figures 6.10 and 6.11 shows that there is an intensity difference between these points, with the
scanned peak having a greater absorption intensity. This is most likely due to a temperature
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difference between the two experiments (the peaks should have the same intensity if the temperatures
are equivalent). The temperatures measured in the two experiments indicated that the data collected
to make Figure 6.10 was from a plasma that was approximately 8 K warmer than the plasma from
which the data in Figure 6.11 was collected. The effect of such a small temperature change should
be negligible, however, the temperature measured in the former was a rotational temperature. As
was seen in Chapter 4, the results of rotational temperature measurements in the hollow cathode
have been questionable.
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Figure 6.11: R(1, 1)u and R(1, 0) absorption scan data taken in the hollow cathode at 130 ± 10 K.
The % indicate the para-H2 enrichment of the feed gas.

As with the measurements taken at 310 K and 180 K, an ANOVA test was performed to determine
if any of the α could be averaged. The 99.0% and 98.9% data sets were the only data that passed
the test, which in this case only served as a measure of the repeatability of the results. The data are
plotted in Figure 6.12. The relationship between p2 and p3 is nonlinear, but the disparity between
experiment and the low temperature model is even greater at this temperature than at 180 K. In
order to match experiment and theory, the model was run using a temperature of 160 K and α=1.70.
There is a high level of confidence that the plasma temperature was 130 ± 10 K, as this temperature
was confirmed by both kinetic and excitation temperature measurements with normal-H2. The high
temperature model should be less accurate under these conditions due to the thermodynamics, yet
at the same time the low temperature model does not match the experimental results. The best fit
α from the high temperature model as well as the best fit from the low temperature model are listed
in Table 6.7.

6.2.2 Expansion experiments

With the objective of measuring α at even colder temperatures, experiments were carried out using
the pulsed supersonic expansion source described in Chapter 4. In these experiments, the R(1, 0)
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Figure 6.12: Measured para-H+
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perature model results.

% para-H2 % para-H+
3 α

99.0 ± 0.5 84.6 ± 0.3 1.56 ± 0.01
98.9 ± 0.5 83.8 ± 0.4 1.45 ± 0.02
90.0 ± 2.5 78.9 ± 0.4 1.34 ± 0.01
74.8 ± 2.5 68.9 ± 0.5 0.88 ± 0.05
63.7 ± 2.5 65.2 ± 0.6 0.95 ± 0.02
25.1 49.8 ± 0.6 -

α (high temp., best fit) 1.30 ± 0.12

α (low temp., best fit) 1.70

Table 6.7: The para-H+
3 enrichment and α calculated for different para-H2 enrichments in the 130 ±

10 K hollow cathode discharge. Best fit α’s for high and low temperature models are also presented.
The uncertainties are 1 σ.

and R(1, 1)u transitions were measured by cavity ringdown with DFG system I using different
para-H2 enrichments. The data were collected in the manner described in §4.1.2, with a varying
number of samples taken at each point (the data are listed in Appendix A). The peak heights were
analyzed and compared in order to determine the para-H+

3 fraction. The samples that were tested
included 99.99%, 97%, 90%, 75%, and 25% enriched para-H2. A comparison of the averaged R(1, 0)
and R(1, 1)u spectra are presented in Figure 6.13. These spectra are normalized to the R(1, 1)u

absorption peak. As predicted by both the hot and cold temperature models, and as observed in the
hollow cathode experiments, the fraction of para-H+

3 increases with the enrichment of the para-H2.
These data were analyzed using the methods described in §5.2.1, and the results are presented in
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Figure 6.13: A comparison of R(1, 0) and R(1, 1)u absorption peaks for various para-H2 enrichments.

Table 6.8, along with the α = kHop/kExchange calculations.

% para-H2 % para-H+
3 α

99.9 ± 0.8 78.5 ± 2.2 0.89 ± 0.19
97.0 ± 0.8 74.7 ± 2.1 0.71 ± 0.15
90.0 ± 0.8 72.7 ± 2.6 0.73 ± 0.21
75.0 ± 0.8 70.6 ± 14.1 -
25.0 ± 0.8 49.1 ± 2.4 -

α (high temp., best fit) 0.78 ± 0.27

α (low temp., best fit) 1.0

Table 6.8: The para-H+
3 enrichment and α calculated for different para-H2 enrichments in the

80±20 K supersonic expansion. Best fit α’s for high and low temperature models are also pre-
sented.

As with the hollow cathode experiments, the values for α were inferred using equation (6.25)
of the high temperature model, because the form of the output from the low temperature model
does not lend itself to the derivation of such an equation. An α was calculated for each feed gas
enrichment, except in the case of measurements taken with the 75% enriched and the normal-H2

feed gas. A value for α was not calculated for the 75% para-H2 data because of the large uncertainty
associated with this measurement, nor for the normal feed gas because normal H2 will always form
a 1:1 ratio of ortho to para-H+

3 for any value of α. The mean values of α for each measurement
along with the standard deviations were subject to an ANOVA test in which the null hypothesis was
µ99.9 = µ97.0 = µ90.0. The null hypothesis was true with a 99% confidence level. It is likely that this
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result was due to the large standard deviations associated with the expansion data set. The errors
were larger in this experiment than in the hollow cathode experiment because of the pulse to pulse
variability in the measurements.

With this statistical test indicating that the inferred values of α were distributed about the same
mean, an average α was calculated from the 99.9%, 97%, and 90% para-enriched measurements.
Thus, for 80±20 K, α = kHop/kExchange ∼ 0.78 ± 0.27, a result which indicates that the exchange
reaction is dominant in this low temperature regime. The results are plotted in Figure 6.14. A
temperature of 130 K and α=1.0 were the input parameters to the low temperature model that
provided the best fit to the experimental data.
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Figure 6.14: Measured para-H+
3 enrichments at 80 ± 20 K plotted along with high and low temper-

ature models.

Dilution experiments

In addition to the measurements taken with pure samples of enriched para-H2, other experiments
were performed with the expansion source in which the different enrichments were diluted in inert
gas. The dilution measurements were performed in the hopes of increasing the para-H+

3 enrichment
for the dissociative recombination experiments. The gas was diluted by mixing a known pressure
of H2 with the inert gas to a target total pressure. For example, a 1% dilution of hydrogen was
produced by diluting 20 mbar of hydrogen to a 2 bar total pressure of mixed gas. The results of
the dilution experiments are listed in Table 6.9. As described in §6.1, the primary reason that a
100% enriched para-H+

3 plasma was never observed is the result of the exchange reaction (6.12), and
the hop reaction (6.11) once a sufficient quantity of ortho-H2 has formed. By diluting the H2 in an
inert gas such as argon or neon, there is a reduction in the quantity [H2], which in turn reduces the
occurrence of H+

3 +H2 collisions, effectively reducing the rate at which this conversion occurs. As can
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Starting para-H2 (%) Percent H2 in Ar para-H+
3 (%)

25.0±0.8 100 49.1 ± 2.4

75.0±0.8 100 70.6 ± 14.1
15 61.3 ± 3.2
10 59.0 ± 2.6
1 69.4 ± 2.7

90.0±0.8 100 72.7 ± 2.6
10 68.6 ± 4.1

97.0±0.8 100 74.7 ± 2.1
10 68.9 ± 2.2
1 83.6 ± 1.9

99.9±0.8 100 78.5 ± 2.2
15 78.0 ± 1.8
5 70.9 ± 2.2

0.8 83.3 ± 1.8

Table 6.9: The para-H+
3 fraction over a range of para-H2 enrichments and dilutions.

be seen from the table, the highest enrichment of para-H+
3 was achieved with a 1% dilution of highly

para-enriched H2 gas. These data are displayed in Figure 6.15. The drop in the para enrichment at
intermediate dilutions was a consistent result, but the reason for this depletion of para-H+

3 is not
understood at present.

A few samples were run with enriched para-H2 diluted in neon instead of argon. When using a
10% dilution, the spectrum appeared much as it did when argon was the diluent, with comparable
para-H+

3 fractions. When diluted to 1%, however, the R(1, 1)u absorption was almost completely
quenched. The reason for this loss of signal is not known, however, the possibility exists that
hydrogen ions of greater mass were being formed. Macdonald and co-workers found that if a very
dilute sample of hydrogen in neon (∼0.001%) was discharged and cooled to 128 K, the H+

5 population
became larger than that of the H+

3 [114].

6.2.3 Future work

This work will benefit from added measurements in the hollow cathode cell and in an expansion.
Additional data are needed at intermediate para-H2 enrichments at both room and astrophysical
temperatures in order to better characterize the relationship between p2 and p3.

For the hollow cathode measurements, special attention must be given to the more mundane
aspects of the experiment. For instance, the liquid N2 dewar should be filled at least a day in
advance in order to allow sufficient backing pressure to build. This will ensure a constant flow of
cryogen that will result in a more consistent plasma temperature. In addition, the scanning method
was found to be more efficient (and less operator-intensive) for data acquisition. The scanning
method enables the simultaneous collection of peak height, number density (by peak integration),
and kinetic temperature.

Additional expansion measurements should be peformed using a cw expansion source versus a
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pulsed source. Use of a cw source will decrease errors in comparison to those of the pulsed source
because there will be no pulse to pulse number density fluctuations, and arcing occurrences should be
reduced. A cw expansion may also provide a decreased plasma temperature, enabling the exploration
of conditions that more closely approximate those of dense clouds. Another method that can be
used to explore reaction (6.1) at colder temperatures would involve the use of an ion trap as a source
of cooled ions.

Finally, measurements that probe the effects of reaction (6.1) on the para-H2 enrichment (p2) are
needed. DFG system II was designed to generate IR light in the range of ∼2.1-5 µm, which places
the S(0) and S(1) quadrupole transitions of H2 (4497.84 cm−1 and 4712.91 cm−1 [20]) within reach.
The plasma source, however, will have to be carefully selected in order to obtain the extended path
length needed to observe the weak quadrupole-allowed absorption features (|µ|2S(0) = 2.99×10−11 D2

and |µ|2S(1) = 1.29× 10−11 D2 [142]), but at the same time reduce the number of reactions external
to H+

3 +H2 that can lead to changes in p2. For example, the hollow cathode cell provides sufficient
path length, however, the formation of H2 on the walls with the ratio ortho:para=3:1 will prevent
an accurate measurement of the relationship between p2 and p3.

6.3 Analysis and astrophysical implications

These experiments improved our understanding of the underlying physics of the H+
3 + H2 reaction,

and provided information that will improve the interpretation of H+
3 and H2 observational data.
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6.3.1 Comparison of experimental results and models

Both the high and low temperature models explain aspects of reaction (6.1), however, this work
has shown that neither is sufficient for describing the reaction over all temperatures. At high tem-
peratures (in this experiment >300 K), the statistical approach appears to predict the relationship
between the para-H2 and para-H+

3 enrichments, and can be used to infer a value for the ratio of
the rate constants, kHop and kExchange. The data from the 310 K hollow cathode experiment sup-
ports the validity of this approach, because the entire set can be fit with a line calculated with
this statistical model. The data set does include some outlying points, and further experiments at
intermediate para-H2 enrichments would be useful in order to determine whether these results are
due to experimental error, or if they actually represent a physical behavior of the system that is
more accurately described by the quantum mechanical low temperature model. Figure 6.16 shows
the different temperature data sets, each fit with a 3rd order polynomial. The fit for the 310 K data
is very close to linear.

In contrast, the data taken at colder temperatures using the hollow cathode cell and the super-
sonic expansion sources indicate a departure from linearity. This departure is predicted by the low
temperature model, and is likely the consequence of the increased role of quantum mechanical effects
at cold temperatures [139]. In particular, this reflects the influence of the energetically unfavorable
conversion of para-H2 to ortho-H2 on the ortho:para product distributions of reaction (6.1). Com-
paring experimental results and the low temperature model indicates that there are limitations with
how the model implements temperature. Figures 6.9, 6.12, and 6.14 show that in colder plasmas, the
model has to be run at higher temperatures if it is to replicate experimental results. This doesn’t
apply for the 180 K experiment because the model cannot predict the behavior of reaction (6.1) at
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temperatures above 160 K. In the case of the 130 K data, the model must be run at 160 K in order
to match experiment. For the 80 K data, the model must be run at 130 K. Limitations such as these
call into question the accuracy of the values for α predicted by the model. Nevertheless an equal,
if not greater degree of uncertainty exists when using the high temperature statistical approach at
cold temperatures. For these reasons, the α in this work were calculated using both models.

Both the high and low temperature models show that the ratio α = kHop/kExchange has a
temperature dependence, with lower α at lower temperatures. Using a phenomenological description,
the hop reaction involves a single transfer of a proton from the former H+

3 component in the H+
5

intermediate to the H2 component. In contrast, the exchange reaction requires that an additional
proton transfer occur from the H2 back to the H+

3 . Another way of looking at the exchange reaction
is as a combination of two consecutive hops. Statistically speaking, the ratio between the hop and
exchange reactions (the number of ways in which each can occur), is 3:6. This would translate to the
number of times the hop and exchange pathways would be observed if the reaction were governed
by statistics alone. Given the observed behavior of α, the statistics appear to dominate at low
temperature. Perhaps the lower temperature leads to a longer-lived H+

5 reaction intermediate in
which more complete scrambling of the protons can occur.

A difference between the low temperature model and experimental results is apparent in the
normal-H2 data. In all cases, the model underpredicts the fraction of para-H+

3 that was experimen-
tally observed (see Figures 6.9, 6.12, and 6.14). The value of p3 in normal-H2 plasmas also appears
to be invariant over at least a 80-310 K temperature range. This behavior is predicted by the high
temperature model (see Figure 6.2), and has important consequences for temperature measurement
in hydrogenic plasmas, which will be discussed next.

6.3.2 Temperature

The concept of ‘excitation’ temperature was introduced in Chapter 4. In order to calculate an exci-
tation temperature, the populations of the ground states of ortho- and para-H+

3 are compared, the
underlying assumption being that these two states are found in a ratio that results from thermaliza-
tion between the spin modifications. As has been discussed, there is no such radiative or non-reactive
collisional pathway for thermalization. In the interstellar medium, the excitation temperature is ob-
served to be tens of degrees colder than temperatures measured by other means. Additional, more
convincing evidence for this effect was found when calculating excitation temperatures for the dif-
ferent plasmas (differing by the enrichments of para-H2) in this work. The excitation temperatures,
Tex, are calculated for each of the plasma conditions, and are presented in Tables 6.10 through 6.13.

The Tex that are calculated for enriched para-H2 plasmas consistently underestimate the tem-
perature, however, the Tex in normal-H2 plasmas match the actual temperature (assuming the other
methods used to calculate temperature for these plasmas were accurate). This can be understood by
considering the previous assumptions that have gone into the calculation. Originally it was assumed
that the calculation of excitation temperature was a comparison between the ground states alone,
differing only by their energies and nuclear spin degeneracies. The familiar expression was,

n(1,0)

n(1,1)
=

g(1,0) spin

g(1,1) spin
e−∆E(1,0)−(1,1)/kBTex , (6.52)
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% para-H2 % para-H+
3 Tex (K)

99.0 ± 0.5 88.2 ± 0.3 ∼15
98.9 ± 0.5 88.2 ± 0.2 ∼16
80.9 ± 2.5 78.2 ± 0.2 ∼24
75.7 ± 0.7 76.5 ± 0.2 ∼25
65.9 ± 2.5 68.9 ± 0.3 ∼37
44.1 ± 0.7 58.1 ± 0.4 ∼76
25.1 49.9 ± 0.4 ∼343

Table 6.10: The excitation temperature (Tex) calculated for different para-H2 enrichments at 310 K.

% para-H2 % para-H+
3 Tex (K)

99.0 ± 0.5 86.03 ± 0.23 ∼17
81.5 ± 0.7 74.87 ± 0.27 ∼26
25.1 50.65 ± 0.41 ∼179

Table 6.11: The excitation temperature (Tex) calculated for different para-H2 enrichments at 180 K.

% para-H2 % para-H+
3 Tex (K)

99.0 ± 0.5 84.56 ± 0.34 ∼17
98.9 ± 0.5 83.77 ± 0.36 ∼17
90.0 ± 2.5 78.92 ± 0.41 ∼21
74.8 ± 2.5 68.86 ± 0.53 ∼31
63.7 ± 2.5 65.15 ± 0.55 ∼37
25.1 49.84 ± 0.61 ∼130

Table 6.12: The excitation temperature (Tex) calculated for different para-H2 enrichments at 130 K.

% para-H2 % para-H+
3 Tex (K)

99.9 ± 0.8 78.5 ± 2.2 ∼19
97.0 ± 0.8 74.7 ± 2.1 ∼22
90.0 ± 0.8 72.7 ± 2.6 ∼23
75.0 ± 0.8 70.6 ± 14.1 ∼30
25.1 ± 0.8 49.1 ± 2.4 ∼80

Table 6.13: The excitation temperature (Tex) calculated for different para-H2 enrichments at 80 K.

which contains a prefactor of 2 because g(1,0) spin/g(1,1) spin = 4/2 = 2. The physical reasons why
this equation sometimes successfully predicted temperature were not well understood. As has been
shown in this work, equation (6.52) is in fact only accurate for normal-H2 plasmas.

A more physically accurate expression can be derived using equations that describe the fraction
of the para and ortho spin modifications in the ground rotational states,

n(1,0)

nall ortho
=

gIgJe−(E(1,0)−E0)/kTrot

∑
i gIgJ(i)e−(Ei−E0)/kTrot

=
gJe−(E(1,0)−E0)/kTrot

∑
i gJ(i)e−(Ei−E0)/kTrot

, (6.53)

n(1,1)

nall para
=

gIgJe−(E(1,1)−E0)/kTrot

∑
i gIgJ(i)e−(Ei−E0)/kTrot

=
gJe−(E(1,1)−E0)/kTrot

∑
i gJ(i)e−(Ei−E0)/kTrot

. (6.54)
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Notice that the spin degeneracy terms (gI) were eliminated by cancellation in equations (6.53) and
(6.54). Adopting E0 = E(1,1) for both spin modifications, and dividing (6.53) by (6.54), it is possible
to obtain a new expression for temperature,

n(1,0)

n(1,1)
=

northo

npara

(
e−(E(1,0)−E(1,1))/kTrot

) ∑para
i gJ(i)e

−(Ei−E(1,1))/kTrot

∑ortho
i gJ(i)e

−(Ei−E(1,1))/kTrot
, (6.55)

where northo/npara = (1− p3)/p3. This term is the ratio of the total ortho-H+
3 and para-H+

3 number
densities, and does not exist in the original equation for excitation temperature (6.52). The last
term on the right hand side of equation (6.55) is the quotient of the partition functions for ortho-
and para-H+

3 , each having been reduced by a factor of the nuclear spin degeneracies.

Temperature (K) = 20 40 55 75 100 150 250 350 450 550

Ppara
i gJ(i)e

−(Ei−E(1,1))/kT

Portho
i gJ(i)e

−(Ei−E(1,1))/kT = 5.17 2.37 2.03 1.93 1.93 1.94 1.98 2.00 2.00 2.00

Table 6.14: The temperature dependence of the ratio gI(ortho)Zpara/gI(para)Zortho.

As can be seen in Table 6.14, this quotient of the modified partition functions is ∼2 when the
temperature is above 55 K. When p3=0.5, then northo/npara = (1−p3)/p3 = 1, and equations (6.55)
and (6.52) are equivalent. This is the case when normal-H2 is used. When the para-H+

3 is enriched,
then (1− p3)/p3 6= 1, and the two expressions are no longer equivalent. Equation (6.55) shows that
an accurate expression for temperature isn’t a comparison between the populations of the two spin
modification ground states, as is done for the excitation temperature measurements. Rather, it is
a comparison of the ground state proportions within each spin modification’s rotational manifold
that is physically relevant. The original equation (6.52) failed because it did not include the effect of
changing para-H+

3 enrichments (p3), and it was comparing two populations that were not thermally
connected.

The experiments in this work have demonstrated that p3 is greater than 0.5 whenever the para-H2

(p2) is enriched above the fraction found in normal-H2. This has been observed over a wide range of
temperatures, including temperatures that are cold enough to represent astrophysical environments.
This explains why temperatures in the diffuse interstellar medium, calculated using the (1,0) and
(1,1) ground states of H+

3 , are typically colder than those measured by other means. As described
in the introductory chapter, the para-H2 is enriched with respect to normal-H2 in both diffuse and
dense clouds, therefore, the H+

3 excitation temperature cannot be used as a proxy for rotational or
kinetic temperature in these regions of space without considering the p3 enrichment.

Setting equations (6.55) and (6.52) equal to each other, using ∆E(1,0)−(1,1)/kB = 32.86K, and
solving for Tex gives,

Tex =
[

1
Trot

− 1
32.86K

ln

(
1− p3

p3

)]−1

, (6.56)

if the temperature is above 55 K. Figure 6.17 shows that the relationship between the two measures of
temperature is not a particularly useful one unless p3 = 0.5. The higher the para-H+

3 enrichment the
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Figure 6.17: Tex as a function of TRot for different para-H+
3 enrichments (p3)

less sensitive the Tex is as a measure of Trot. The temperature independent, statistically-predicted
property that normal-H2 will generate a plasma in which p3=0.5 is beneficial for temperature mea-
surement in laboratory plasmas, but the conditions under which a normal para-H2 enrichment will
persist are unlikely to be found in the interstellar medium.

6.3.3 Astrophysical implications for the H+
3 ortho/para ratio

The laboratory results show that the para-H+
3 enrichment has a strong and reproducible dependence

on the para-H2 enrichment. The high and low temperature models indicate that this relationship
does not lead to a thermalization between the H+

3 spin modifications, but rather to a steady state
condition where the distribution of H+

3 spin modifications is driven by the enrichment of para-H2.
This conclusion has direct applicability to both diffuse and dense interstellar clouds, because H2 is
highly abundant in both regimes.

Before any valid comparison can be made between the laboratory and astrophysical plasmas,
however, it is important to confirm that the former accurately reflects the conditions of the latter.
This was carried out in conjunction with the derivations in §6.1.2 and §6.1.3 for H2, but will be
accomplished here for H+

3 . The pressures found in diffuse and dense clouds are significantly lower
than those of the laboratory plasmas described in this work, but the temperatures were close, at
least for the diffuse cloud case. Despite the pressure differences, the constituent makeup should be
similar. According to equations (6.13) and (6.14), the only reactants outside of H2 and H+

3 that
play a significant role in dp3/dt are H+

2 and electrons. The abundance of H+
2 has been measured

mass spectrometrically in the expansion source in this experiment to be 3 orders of magnitude less
than H+

3 . This is largely due to the high number density of neutral H2, which quickly reacts with
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the H+
2 to form H+

3 . The same is true in the interstellar medium given the abundance of neutral
H2. The number density of electrons is estimated to be ∼ 1 × 10−2 cm−3 in diffuse clouds, which
means that a typical H+

3 will undergo hundreds of collisions with H2 before it is destroyed by a
dissociative recombination collision with an electron [36]. The primary destructive pathway for H+

3

in dense clouds is by reaction with CO, and the lifetime of the ion is even longer as a result of the
rate coefficient kCO, which is 2 orders of magnitude smaller than the dissociative recombination rate
kr [36]. Therefore the comparison of laboratory measurements and the interstellar medium for H+

3

is valid, with H2 being the molecule with which H+
3 interacts most frequently. Although it has been

assumed by others that the H+
3 +H2 reaction drives the spin modification steady state of H+

3 , it has
not been verified in the laboratory under astrophysical temperature conditions.

Figure 6.18 plots the ground state ratio of ortho to para H+
3 and H2, measured in the hollow

cathode and expansion experiments (J = 1 for ortho-H2, and J = 0 for para-H2). The data are
presented without the Boltzmann corrections so that the laboratory results can be compared directly
with astronomical observations without any assumptions regarding temperature. This figure also
plots the hypothetical thermal ratios that would exist for both species if the spin modifications were
actually thermalized (+). It is clear that the H+

3 spin modifications are not distributed thermo-
dynamically, and the separation between the data points obtained at different temperatures would
make it difficult to use such a plot to infer temperature in interstellar clouds. Nevertheless, it is
evident that the relationship between H2 and H+

3 ground state enrichments obtained from the X
Persei and ζ Persei observations correlate well with the data obtained in these experiments. This
is direct evidence that the H+

3 +H2 reaction is driving the distribution of H+
3 spin modifications in

these diffuse interstellar clouds.

111



6.3.4 Astrophysical implications for the H2 ortho/para ratio

The distribution of H2 spin modifications will reflect the thermal conditions in which the H2 was
formed, or it will reflect the conditions under which subsequent thermalizing reactions take place.
In diffuse clouds, the H2 is thermalized by reactions with H+, which is more abundant than H+

3 by
four orders of magnitude [43]. The product distributions of the H2+H+ reaction will be dictated
by thermal conditions. On the other hand in dense clouds, the thermalization of H2 must occur by
way of reactions with H+

3 which is more abundant than H+ [136], and which posesses an order of
magnitude faster rate constant (for H++H2, k ∼ 2× 10−10, [8]).

The high and low temperature dp2/dt were developed solely to predict the outcome of the H+
3 +H2

reaction in the context of astrophysical environments because the means to measure the para-H2

enrichment in the laboratory were not available for this work. As was shown in §6.1.2 and §6.1.3, the
reaction of H2 with H+

3 can drive the para enrichment of H2, and has a dependence on temperature,
however, the high and low temperature models predict different outcomes. For the high temperature
model there is no temperature dependence outside of α, which governs the rate at which steady state
is reached, and the steady state is always a normal-H2 enrichment. In contrast, the low tempera-
ture model predicts that the steady state enrichment will be close to a thermal distribution, where
thermalization is achieved by reactions with H+

3 . The experimental data show trends that indicate
the relevance of the low temperature model, especially the nonlinear relationship between p3 and p2

at cold temperatures. The time-dependent results of this model for H2 thus present the tantalizing
prospect that the H+

3 +H2 reaction is the thermalization pathway for para-H2 in dense interstellar
clouds.

With the insight gained through this work comes the potential for increased applicability of
the hydrogen spin modifications as astrophysical probes. The data that describes the relationship
between p2 and p3 will enable theorists to improve models for the H+

3 +H2 reaction at cold, astro-
physical temperatures. This in turn will lead to an improved ability to understand the temperature
dependence of the hop and exchange reaction rates, which will ultimately enable the prediction of
the H+

3 and H2 spin modification distributions at different temperatures. As can be seen in Figure
6.18, the correlation between experimental results and astronomical observation already indicates
that the results of this work can be used to predict the para-H2 enrichment from observed H+

3 ground
states. These results are important for the astrochemist because the deuterium chemistry in the
interstellar medium has a strong dependence on the level of ortho-H2 enrichment. The reaction
that drives the deuteration of H+

3 will proceed more rapidly with lower fractions of ortho-H2 [45].
As discussed in the introduction, H+

3 is the precursor molecule to many of the heavier constituents
of the interstellar medium, therefore, knowing the rate at which it is deuterated will impact our
understanding of the deuterium chemistry for a much wider range of molecular species.

112



Chapter 7

References

[1] E. Anders and N. Grevesse, Geochim. et Cosmochim. Acta, 53, 197 (1989).

[2] T. Oka, PNAS 103, 12235 (2006).

[3] A. J. Dempster, Phil. Mag. 31, 438 (1916).

[4] W. D. Watson, Astrophys. J. 183, L17 (1973).

[5] E. Herbst and W. Klemperer, Astrophys. J. 185, 505 (1973).

[6] B. J. McCall, Spectroscopy of H+
3 in Laboratory and Astrophysical Plasmas, Ph.D. Thesis, Uni-

versity of Chicago, (2001).

[7] J. C. Raich and R. H. Good, Astrophys. J. 139, 1004 (1964).

[8] D. Gerlich, J. Chem. Phys. 92, 2377 (1990).

[9] E. Wigner, Z. f. Phys. Chem. 23, 28 (1933).

[10] W. Heisenberg. Z. f. Physik 41, 239 (1927).

[11] F. Hund, Z. f. Physik 42, 93 (1927).

[12] K. F. Bonhoeffer and P. Harteck, Naturwiss. 17, 182 (1929).

[13] K. F. Bonhoeffer and P. Harteck, Z. Phys. Chem. B4, 113 (1929).

[14] P. F. Bernath, Spectra of Atoms and Molecules, 2nd Ed., Oxford Univ. Press, New York (2005).

[15] D. M. Bishop, Group Theory and Chemistry, Dover Publications, Inc., New York (1973).

[16] P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, 2nd Ed., NRC Research
Press, Ottawa (1998).

[17] J. M. Shull, J. Tumlinson, E. B. Jenkins, H. W. Moos, B. L. Rachford, B. D. Savage, K. R. Sem-
bach, T. P. Snow, G. Sonneborn, D. G. York, W. P. Blair, J. C. Green, S. D. Friedman, and
D. J. Sahnow, Astrophys. J. 538, L73 (2000).

[18] S. I. B. Cartledge, G. C. Clayton, K. D. Gordon, B. L. Rachford, B. T. Draine, P. G. Martin,
J. S. Mathis, K. A. Misselt, U. J. Sofia, D. C. B. Whittet, and M. J. Wolff, Astrophys. J. 630,
355 (2005).

[19] Y. Sheffer, M. Rogers, S. R. Federman, N. P. Abel, R. Gredel, D. L. Lambert, and G. Shaw,
arXiv:0807.0940v1 (2008).

[20] J. H. Lacy, R. Knacke, T. R. Geballe, and T. Tokunaga, Astrophys. J. 428, L69 (1994).

[21] J. J. Thomson, Phil. Mag. 21, 225 (1911).

[22] T. R. Hogness and E. G. Lunn, Phys. Rev. 26, 44 (1925).

113



[23] T. Oka, Phys. Rev. Lett. 45, 531 (1980).

[24] C. M. Lindsay and B. J. McCall, J. Mol. Spec. 210, 60 (2001).

[25] A. R. W. McKellar and J. K. G. Watson, J. Mol. Spec. 191, 215 (1998).

[26] M. Goto, B. J. McCall, T. R. Geballe, T. Usuda, N. Kobayashi, H. Terada, and T. Oka, PASJ
54, 951 (2002).

[27] D. W. Martin, E. W. McDaniel, and M. L. Meeks, Astrophys. J. 134, 1012 (1961).

[28] T. R. Geballe and T. Oka, Nature 384, 334 (1996).

[29] B. J. McCall, T. R. Geballe, K. H. Hinkle, and T. Oka, Science 279, 1910 (1998).

[30] J. H. Black, E. F. van Dishoeck, S. P. Willner, and R. C. Woods, Astrophys. J. 358, 459 (1990).

[31] T. R. Geballe, B. J. McCall, K. H. Hinkle, and T. Oka, Astrophys. J. 510, 251 (1999).

[32] B. J. McCall, K. H. Hinkle, T. R. Geballe, and T. Oka, Faraday Disc. 109, 267 (1998).

[33] B. J. McCall, T. R. Geballe, K. H. Hinkle, and T. Oka, Astrophys. J. 522, 338 (1999).

[34] B. J. McCall, A. J. Huneycutt, R. J. Saykally, T. R. Geballe, N. Djuric, G. H. Dunn, J. Se-
maniak, O. Novotny, A. Al-Khalili, A. Ehlerding, F. Hellberg, S. Kalhori, A. Neau, R. Thomas,
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and A. Wolf, arXiv: 0810.0405 (2008).

[62] B. A. Tom, V. Zhaunerchyk, M. B. Wiczer, A. A. Mills, K. N. Crabtree, M. Kaminska,
W. D. Geppert, M. Hamberg, M. af Ugglas, E. Vigren, W. J. van der Zande, M. Larsson,
R. D. Thomas, and B. J. McCall, J. Chem. Phys. 130, 031101 (2009).

[63] D. Uy, M. Cordonnier, and T. Oka, Phys. Rev. Lett. 78, 3844 (1997).

[64] M. Cordonnier, D. Uy, R. M. Dickson, K. E. Kerr, Y. Zhang, and T. Oka, J. Chem. Phys. 113,
3181 (2000).

[65] S. B. Duckett, C. L. Newell, and R. Eisenberg, J. Am. Chem. Soc. 116, 10548 (1994).

[66] S. Tam and M. Fajardo, Rev. Sci. Inst. 70, 1926 (1999).

[67] S. O. Kasap, Principles of Electronic Materials and Devices, 2nd Ed., McGraw Hill, (2002).

[68] A. Farkas, Orthohydrogen, Parahydrogen, and Heavy Hydrogen, Cambridge Univ. Press, London
(1935).

[69] A. T. Stewart and G. L. Squires, J. Scientific Inst. 32, 26 (1955).

[70] M. J. Assael, M. Dix, A. Lucas, and W. A. Wakeham, J. Chem. Soc.: Faraday Trans. 1 77, 439
(1981).
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Appendix A

Spectroscopic data

The first 6 tables in this appendix contain data from the expansion experiments. The upper section
of each table presents the data from the ortho and para measurements, progressing from raw, to
Gaussian fit, to current-corrected, to current-corrected Gaussian fit peak heights. The lower sec-
tion of each table shows the respective para-H+

3 fractions (p3), as well as the p3 calculated from
Boltzmann-corrected data.

Hollow cathode cell p3 and (1,0)/(1,1) data are presented in the remaining tables of the appendix.
The method by which the data were obtained is described in Chapter 6. Multiple p3 were calculated
for each condition by comparing all R(1, 0) and R(1, 1)u measurements for that condition.
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p3

T=290 K 310 K 330 K (1,0)/(1,1)

1 0.8800 0.8808 0.8814 0.2435
2 0.8777 0.8785 0.8792 0.2489
3 0.8864 0.8871 0.8878 0.2289
4 0.8837 0.8844 0.8851 0.2351
5 0.8807 0.8815 0.8821 0.2419
6 0.8803 0.8810 0.8817 0.2429

Table A.7: Hollow cathode cell data for p2=.990±.005, (1)/(0)=.018±.005, (310±20 K).

p3

T=290 K 310 K 330 K (1,0)/(1,1)

1 0.8797 0.8805 0.8812 0.2442
2 0.8814 0.8822 0.8829 0.2402
3 0.8832 0.8840 0.8847 0.2361
4 0.8792 0.8800 0.8807 0.2454
5 0.8804 0.8813 0.8819 0.2426
6 0.8834 0.8842 0.8848 0.2356
7 0.8785 0.8793 0.8800 0.2470
8 0.8800 0.8808 0.8815 0.2435
9 0.8835 0.8843 0.8849 0.2355

Table A.8: Hollow cathode cell data for p2=.989±.005, (1)/(0)=.020±.005, (310±20 K).

p3

T=290 K 310 K 330 K (1,0)/(1,1)

1 0.7803 0.7816 0.7827 0.5028
2 0.7802 0.7815 0.7826 0.5030
3 0.7821 0.7833 0.7844 0.4976
4 0.7793 0.7806 0.7817 0.5057
5 0.7807 0.7819 0.7830 0.5017
6 0.7814 0.7827 0.7838 0.4995
7 0.7787 0.7800 0.7811 0.5075
8 0.7790 0.7802 0.7814 0.5067
9 0.7814 0.7827 0.7838 0.4995

Table A.9: Hollow cathode cell data for p2=.809±.007, (1)/(0)=.411±.007, (310±20 K).
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p3

T=290 K 310 K 330 K (1,0)/(1,1)

1 0.7649 0.7662 0.7674 0.5490
2 0.7651 0.7664 0.7675 0.5484
3 0.7663 0.7677 0.7688 0.5445
4 0.7606 0.7619 0.7631 0.5622
5 0.7609 0.7622 0.7634 0.5613
6 0.7626 0.7640 0.7651 0.5558

Table A.10: Hollow cathode cell data for p2=.757±.007, (1)/(0)=.559±.007, (310±20 K).

p3

T=290 K 310 K 330 K (1,0)/(1,1)

1 0.6882 0.6898 0.6912 0.8090
2 0.6889 0.6905 0.6918 0.8068
3 0.6896 0.6912 0.6926 0.8038
4 0.6857 0.6872 0.6886 0.8188
5 0.6847 0.6863 0.6877 0.8223
6 0.6881 0.6897 0.6910 0.8096
7 0.6847 0.6863 0.6877 0.8223
8 0.6853 0.6869 0.6883 0.8202
9 0.6878 0.6894 0.6907 0.8107

Table A.11: Hollow cathode cell data for p2=.659±.025, (1)/(0)=.898±.025, (310±20 K).

p3

T=290 K 310 K 330 K (1,0)/(1,1)

1 0.5746 0.5764 0.5780 1.3219
2 0.5769 0.5787 0.5802 1.3099
3 0.5776 0.5794 0.5810 1.3060
4 0.5795 0.5813 0.5829 1.2957
5 0.5822 0.5840 0.5856 1.2813
6 0.5829 0.5847 0.5863 1.2779
7 0.5767 0.5784 0.5800 1.3110
8 0.5793 0.5811 0.5826 1.2971
9 0.5796 0.5814 0.5830 1.2953

Table A.12: Hollow cathode cell data for p2=.441±.007, (1)/(0)=2.205±.007, (310±20 K).
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p3

T=290 K 310 K 330 K (1,0)/(1,1)

1 0.4924 0.4943 0.4959 1.8408
2 0.4918 0.4936 0.4953 1.8454
3 0.4999 0.5018 0.5034 1.7864
4 0.4999 0.5017 0.5033 1.7867
5 0.4980 0.4998 0.5014 1.8003
6 0.4983 0.5002 0.5018 1.7978

Table A.13: Hollow cathode cell data for p2=.251, (1)/(0)=5.189 (310±20 K).

p3

T=290 K 310 K 330 K (1,0)/(1,1)

1 0.5001 0.5020 0.5036 1.7848
2 0.4992 0.5011 0.5027 1.7913
3 0.4903 0.4921 0.4937 1.8569
4 0.4925 0.4944 0.4960 1.8399
5 0.4973 0.4992 0.5007 1.8055
6 0.4976 0.4994 0.5011 1.8030

Table A.14: Hollow cathode cell data for p2=.251, (1)/(0)=5.189 (310±20 K).
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p3

T=170 K 180 K 190 K (1,0)/(1,1)

1 0.8615 0.8629 0.8641 0.2639
2 0.8601 0.8615 0.8628 0.2670
3 0.8606 0.8620 0.8633 0.2659
4 0.8586 0.8600 0.8613 0.2703
5 0.8601 0.8616 0.8628 0.2669
6 0.8580 0.8594 0.8607 0.2716
7 0.8565 0.8579 0.8592 0.2750
8 0.8567 0.8582 0.8594 0.2745
9 0.8574 0.8588 0.8601 0.2730

Table A.15: Hollow cathode cell data for p2=.990±.005, (1)/(0)=.013±.005, (180±10 K).

p3

T=170 K 180 K 190 K (1,0)/(1,1)

1 0.7486 0.7508 0.7528 0.5513
2 0.7463 0.7485 0.7505 0.5582
3 0.7491 0.7514 0.7533 0.5496
4 0.7456 0.7478 0.7498 0.5600
5 0.7452 0.7475 0.7494 0.5613
6 0.7474 0.7496 0.7516 0.5548
7 0.7440 0.7462 0.7482 0.5648
8 0.7464 0.7487 0.7505 0.5576
9 0.7454 0.7477 0.7497 0.5605

Table A.16: Hollow cathode cell data for p2=.815±.007, (1)/(0)=.289±.007, (180±10 K).

p3

T=170 K 180 K 190 K (1,0)/(1,1)

1 0.5002 0.5032 0.5058 1.6399
2 0.4992 0.5022 0.5049 1.6462
3 0.5052 0.5082 0.5108 1.6081
4 0.5049 0.5079 0.5105 1.6096
5 0.5061 0.5090 0.5117 1.6030
6 0.5057 0.5087 0.5113 1.6055

Table A.17: Hollow cathode cell data for p2=.251, (1)/(0)=3.791, (180±10 K).
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p3

T=120 K 130 K 140 K (1,0)/(1,1)

1 0.8330 0.8365 0.8395 0.2991
2 0.8332 0.8368 0.8397 0.2986
3 0.8377 0.8412 0.8440 0.2891
4 0.8343 0.8378 0.8407 0.2964
5 0.8355 0.8390 0.8419 0.2937
6 0.8325 0.8360 0.8389 0.3003
7 0.8354 0.8389 0.8417 0.2940
8 0.8330 0.8365 0.8394 0.2992
9 0.8333 0.8368 0.8397 0.2986

Table A.18: Hollow cathode cell data for p2=.989±.005, (1)/(0)=.012±.005, (130±10 K).

p3

T=120 K 130 K 140 K (1,0)/(1,1)

1 0.7845 0.7888 0.7923 0.4099
2 0.7847 0.7892 0.7926 0.4093
3 0.7856 0.7899 0.7934 0.4072

Table A.19: Hollow cathode cell data for p2=.900±.025, (1)/(0)=.122±.025, (130±10 K).

p3

T=120 K 130 K 140 K (1,0)/(1,1)

1 0.6453 0.6511 0.6560 0.8201
2 0.6448 0.6506 0.6555 0.8221
3 0.6470 0.6528 0.6577 0.8141

Table A.20: Hollow cathode cell data for p2=.637±.025, (1)/(0)=.625±.025, (130±10 K).
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Appendix B

Boltzmann distributions

The following tables include the partition functions and populations for ortho- and para-H+
3 states.

These tables include the Boltzmann corrections (B) that were used throughout this work.
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Appendix C

Select derivations

This appendix describes how to calculate specific spin modification branching weights from the
identity, hop, and exchange pathways for reaction (6.1). This derivation is presented in more detail
than in [131]. The appendix also presents the steps taken to derive equation (6.20) from equation
(6.18).
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C.1 Deriving the branching weights for the identity, hop

and exchange reactions

In order to obtain the spin modification branching weights from the identity (6.10), hop (6.11), and
exchange (6.12) pathways of,

H+
3 + H2 → H2 + H+

3 , (C.1)

one can use the same angular momentum algebra techniques described in [131] and Chapter 6. The
calculation of the hop contribution is trivial, and simply requires the multiplication of the weighting
coefficients from Table 6.3 (e.g. 12, 4, 12, and 4) by the proportion of reactions that proceed via the
identity (1/10). The result is, 



6/5 0 0 0
0 2/5 0 0
0 0 6/5 0
0 0 0 2/5




(C.2)

The ordering of the elements in this matrix matches the ordering of the reactants and products in
Table 6.3.

Finding the branching weights for the hop reaction is slightly more complex. First, one can
represent the outcome of the hop reaction as proceeding by two distinct steps, the breakup of an H+

3

into H+ and H2, and the formation of an H+
3 from H+ and H2. Using angular momentum algebra,

the equation,
H2 + H+ → H+

3 (C.3)

can be expressed as,
D1 ⊗D1/2 → D3/2 ⊕D1/2, (C.4)

or,
D0 ⊗D1/2 → D1/2. (C.5)

These expressions are used to calculate the product branching weights that are attributable to the
reactant H2 spin species. Using Frobenius reciprocity with equations (C.4) and (C.5), 2D1/2 for
para-H+

3 , and balancing the dimensions, one can write the expressions for,

H+
3 → H2 + H+, (C.6)

as,
D3/2 → 4(D1 ⊗D1/2), (C.7)

and,
D1/2 → (D1 ⊗D1/2/6)⊕ (D0 ⊗D1/2/2). (C.8)

These two expressions are used to identify the product spin species given a particluar H+
3 spin

modification. Equations (C.4) and (C.5) as well as (C.7) and (C.8) provide all that is needed to
derive the products from each reactant spin modification combination in the hop reaction. For
example, if ortho-H+

3 (I=3/2) is combined with ortho-H2 (I=1), equation (C.4) shows that the H+
3

will be found in the ratio ortho:para=2:1 (based on the spin degeneracies of the products in equation
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(C.4)), and equation (C.7) shows that all H2 will be in the ortho state. To further illustrate, consider
the reaction between para-H+

3 and ortho-H2. In this case, equation (C.4) shows that ortho- and para-
H+

3 will form in a 2:1 ratio (again, based on spin degeneracies), and equation(C.8) shows that ortho-
and para-H2 will form in a ratio of 1:1. Peforming similar operations with the other two reactant
permutations, it is possible to build a matrix in which the rows will sum to the total weight for each
reactant combination. 



8 0 4 0
0 0 4 0
4 4 2 2
0 0 2 2




(C.9)

Finally, multiplying this matrix by 3/10 (the fraction of reactions that result in a hop), the result
is, 



12/5 0 6/5 0
0 0 6/5 0

6/5 6/5 3/5 3/5
0 0 3/5 3/5




(C.10)

A matrix of branching weights for the exchange reaction can be obtained by subtracting the matrices
(C.2) and (C.10) from the total values in Table 6.2, thereby obtaining the results depicted in Table
6.3.

C.2 The detailed derivation of equation (6.20) from

equation (6.18)

Substituting equations (6.13) and (6.15) into equation (6.18),

d

dt
p3 =

[total-H+
3 ] d

dt [p-H+
3 ]− [p-H+

3 ] d
dt [total-H+

3 ]
[total-H+

3 ]2
,

results in,

d

dt
p3 =

[
[total-H+

3 ]

{
k1

(2

3
[o-H2] + [p-H2]

)
[p-H+

2 ] + k1

(1

3
[o-H2] +

2

3
[p-H2]

)
[o-H+

2 ]

+
{

kH

(− 2

3
[o-H2]

)
+ kE(−1

3
[o-H2]− 1

3
[p-H2]

)− (
kr(para)[e−r ] + γ(para)

)}
[p-H+

3 ]

+
{

kH

(1

3
[o-H2] + [p-H2]

)
+ kE

(1

3
[o-H2] +

1

3
[p-H2]

)}
[o-H+

3 ]

}
(C.11)

− [p-H+
3 ]

{
k1[total-H2][total-H+

2 ]− (
kr(ortho)[e−r ] + γ(ortho)

)
[o-H+

3 ]

− (
kr(para)[e−r ] + γ(para)

)
[p-H+

3 ]

}]
[total-H+

3 ]−2
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Using p3 to simplify, this can be written as,

d

dt
p3 =

1
[total-H+

3 ]

{
k1

(2

3
[o-H2] + [p-H2]

)
[p-H+

2 ] + k1

(1

3
[o-H2] +

2

3
[p-H2]

)
[o-H+

2 ]
}

+
{

kH

(− 2

3
[o-H2]

)
+ kE(−1

3
[o-H2]− 1

3
[p-H2]

)− (
kr(para)[e−r ] + γ(para)

)}
p3

+
{

kH

(1

3
[o-H2] + [p-H2]

)
+ kE

(1

3
[o-H2] +

1

3
[p-H2]

)}(
1− p3

)
(C.12)

− p3

{
k1[total-H2]

[total-H+
2 ]

[total-H+
3 ]
− (

kr(ortho)[e−r ] + γ(ortho)

)(
1− p3

)

− (
kr(para)[e−r ] + γ(para)

)
p3

}
.

Multiplying the terms containing number densities of molecular hydrogen by [H2]/[H2] provides a
means to insert the term p2, giving,

d

dt
p3 =

[total-H2]
[total-H+

3 ]

{
k1

(2

3

(
1− p2

)
+ p2

)
[p-H+

2 ] + k1

(1

3

(
1− p2

)
+

2

3
p2

)
[o-H+

2 ]
}

+
{

[total-H2]
(

kH

(− 2

3

(
1− p2

))
+ kE(−1

3

(
1− p2

)− 1

3
p2

))− (
kr(para)[e−r ] + γ(para)

)}
p3

+
{

kH

(1

3

(
1− p2

)
+ p2

)
+ kE

(1

3

(
1− p2

)
+

1

3
p2

)}(
1− p3

)
[total-H2] (C.13)

− p3

{
k1[total-H2]

[total-H+
2 ]

[total-H+
3 ]
− (

kr(ortho)[e−r ] + γ(ortho)

)(
1− p3

)

− (
kr(para)[e−r ] + γ(para)

)
p3

}
.

Grouping the terms with common rate coefficients gives,

d

dt
p3 = k1

[total-H2]
[total-H+

3 ]

{(2
3

+
1
3
p2

)
[p-H+

2 ] +
(1
3

+
1
3
p2

)
[o-H+

2 ]− [total-H+
2 ]p3

}

+
{(

kr(ortho) − kr(para)

)
[e−r ] +

(
γortho − γpara

)}
p3 (C.14)

−
{(

kr(ortho) − kr(para)

)
[e−r ] +

(
γortho − γpara

)}
p2
3

+ kH [total-H2]
(

2
3
p2 − p3 +

1
3

)
+ kE [total-H2]

(
1
3
− 2

3
p3

)
.
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With slight rearrangement this becomes,

d

dt
p3 = k1[total-H2]

{(2
3

+
1
3
p2

) [p-H+
2 ]

[total-H+
3 ]

+
(1
3

+
1
3
p2

) [o-H+
2 ]

[total-H+
3 ]
− [total-H+

2 ]
[total-H+

3 ]
p3

}

+
{(

kr(ortho) − kr(para)

)
[e−r ] +

(
γortho − γpara

)}
p3 (C.15)

−
{(

kr(ortho) − kr(para)

)
[e−r ] +

(
γortho − γpara

)}
p2
3

+ kH [total-H2]
(

2
3
p2 − p3 +

1
3

)
+ kE [total-H2]

(
1
3
− 2

3
p3

)
,

which can be simplified to,

d

dt
p3 = k1[total-H2]

{
2
3

[p-H+
2 ]

[total-H+
3 ]

+
1
3

[o-H+
2 ]

[total-H+
3 ]

+
(

1
3
p2 − p3

)
[total-H+

2 ]
[total-H+

3 ]

}

+
{(

kr(ortho) − kr(para)

)
[e−r ] +

(
γortho − γpara

)}
p3 (C.16)

−
{(

kr(ortho) − kr(para)

)
[e−r ] +

(
γortho − γpara

)}
p2
3

+ kH [total-H2]
(

2
3
p2 − p3 +

1
3

)
+ kE [total-H2]

(
1
3
− 2

3
p3

)
,

which is equation (6.20).
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Appendix D

Schematics

This appendix includes the electrical diagrams for some of the components used in this work. The
figure annotations describe the purpose of the component, as well as the origin of its design.
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Appendix E

Solid hydrogen experiment

This appendix describes the solid hydrogen experiment. The purpose of the experiment was to
measure the index of refraction of solid hydrogen with the ultimate goal of constructing a Raman
laser. The first section describes the experiment and how to make a solid hydrogen crystal. The
second section presents the data analysis procedures.
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E.1 Experimental details

The experiment was designed to measure the index of refraction of solid hydrogen at 3 to 4 different
wavelengths. Specifically, at 632 nm (produced by a HeNe laser), and at 514, 496, and 476 nm
(produced by an Ar ion laser). The crystal is formed in a small stainless steel cell that is coupled to
the cold head of a liquid He cryostat (Infrared Laboratories). The cell is designed with two circular
openings through which the laser beam is able to pass. The openings are covered by sapphire
windows, one of which is intentionally tilted with respect to the incident beam. This angle induces
a deflection of the beam that is dependent on the index of refraction of the solid hydrogen. The key
experimental details include:

1) Manufacturing and installing the indium gaskets that seal the sapphire windows to the cell.
2) Temperature controller settings.
3) Making the solid hydrogen crystal.
4) Taking the measurements.

Each will be discussed, in turn, below.

E.1.1 Indium gaskets

The indium used to form the gaskets comes in small tube-like strands 1-2 mm in diameter. The
surfaces that are to be sealed together with the gaskets should be cleaned of dirt and old material.
This can be done using a razor blade and extremely fine sandpaper (400, followed by Emery 352,
Behr-Manning, Norton Abrasives or equivalent), but care should be taken to prevent scratching
the surfaces (the sapphire windows usually do not need to be cleaned in this manner). The final
preperatory step is a wash with methanol followed by air drying.

A small strand of indium is cut to a length that will produce a circumference that is slightly
larger than desired. Using gloves, a clean surface, a razor, and small wooden sticks to manipulate the
indium, make an angled cut at either end of the indum. The freshly cut sections should immediately
be joined and pressed together using the wooden sticks. The indium ends will cold solder together
within a minute. After the gasket is formed, it should be immersed in 1 M HCl, then dipped in
methanol. The gasket should be placed on the solid hydrogen cell surface, followed by the sapphire
window. The window is then tightened onto the cell using screws, which will compress the indium
gasket between the surfaces. The installation and compression of the indium gasket should occur
within one minute of the HCl/methanol cleaning to minimize the amount of oxidized film that forms
on the surface of the gasket.

E.1.2 Temperature controller

The same temperature controller (Lakeshore) used for the para-H2 converter is also used to control
the liquid He cryostat in which the solid hydrogen crystal is formed. For this reason, careful ex-
perimental timing is required with regards to production of parahydrogen for the crystal (necessary
to prevent crystal boil-off upon the exothermic ortho to para conversion), and the formation of the
crystal itself.

There are a total of two temperature sensing channels in the temperature controller. In addition,
there are two temperature sensors in the cryostat (silicon diode and germanium). It is important
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to connect the temperature sensors to the correct channel on the temperature controller, because
the appropriate temperature response curves are only installed in certain channels. Channel A
should be connected to the germanium sensor that measures the temperature of the cell itself, and
channel B should be connected to the silicon sensor that measures the temperature of the cold head.
The former will only show correct temperatures at or below 100 K. In addition to connecting the
components properly, the channels must be set so that the correct temperature curves are used.
This is done by adjusting the small toggle settings at the back of the controller (underneath the
respective connectors). Only the last three toggles need to be adjusted as the first toggles do not
matter. The correct settings are ‘110’ for Ge, and ‘101’ for Si. The silicon diode sensor on the
closed-cycle He cryostat requires a setting of ‘111.’

The gain, rate, and reset should be set to 200, 40, and 300, respectively. The resistive heater
response should be set to ‘-1’ or ‘max’ as anything less will not provide the necessary temperature
control authority.

E.1.3 Making the crystal

After ensuring the cryostat and cell are sufficiently leak-proof (∼ 1 × 10−10 L atm s−1), the cell,
lines, and vacuum sleeve should be evacuated. It is important to continue pumping the vacuum
sleeve using a sealed-oil molecular turbopump throughout the experiment (the pressure measured
by this pump also being a good indicator for leaks). The cryostat is first cooled by filling both the
inner and outer dewars with liquid N2. After a period of hours, the operator can expect the cryostat
to cool to 78-80 K. When the operator is ready to proceed with crystal production, the liquid N2

should be purged from the inner (He) dewar. This is accomplished by sealing the opening of the
dewar with a stopper that has a gaseous N2 input line and a outflow tube long enough for one end
to be immersed in the liquid N2 in the bottom of the dewar. Care should be taken to ensure all of
the liquid has been blown out before introducing the liquid He, otherwise a large ice block will form
in the dewar.

The next step is to introduce the liquid He into the purged inner dewar. This will begin cooling
the cell to the 15-20 K temperature target for the phase change of H2 from gas to liquid. Once
established in this temperature range, begin introducing the H2 which will fill the cell as a liquid.
After the cell is filled, slowly raise the temperature of the cell to 30-40 K in order to boil the liquid.
Reserve this gas in a small teflon-lined cylinder (attached via 1/4-inch high pressure stainless steel
tubing). This step is important because it is necessary to form the crystal under high pressure.

Re-fill the cell with a new batch of para-H2 liquid. Once the cell is full, apply 10-30 atm of
backing pressure to the liquid in the cell using the reserved gas from the small sample vessel. Begin
lowering the temperature in the cryostat. The operator should observe crystal formation beginning
between 12-15 K. The temperature can be adjusted using either the resistive heater (adjusted via
the temperature controller) or the mechanical heat switch that connects the cold head table inside
the cryostat to the dewar. Once the temperature is adjusted using the latter, the heat switch can
be decoupled from the outer sleeve by sliding the knob outwards from the cryostat.
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E.1.4 Taking index measurements

A key assumption in this experiment is that all optical surfaces encountered by the laser beam
are normal to the direction of beam propagation, except for the intentionally tilted window. The
beam height is measured using a photodiode detector (Thorlabs Det 210) mounted on translation
stages (Thorlabs PT-1). The beam is made level with the surface of the optics bench (within 5-10
thousands of an inch over the length of the table) to ensure that the measured deflection is primarly
due to the tilted window/solid-H2 interface.

The height of the beam is measured in two locations downstream of the cryostat. In addition,
similar measurements are taken for a material of known index, such as liquid H2. It was discovered
that the latter measurement is best taken after the crystal measurements. Convection currents do
not seem to form in a liquid that forms from the melted solid in contrast to the liquid that is
condensed from the gas.

E.2 Data analysis

As mentioned earlier, the key assumption in the index data analysis is a beam that is normal to all
optical surfaces but one. Snell’s law and trigonometric relationships can be used to solve a system
as depicted in Figure E.1 for the change in direction of a beam propagating from the solid hydrogen
into the tilted sapphire window.

Figure E.1: The direction of travel for a beam propagating through the intentionally tilted window
of the solid hydrogen cell.

In fact, it is possible to derive a complex trigonometric relationship that describes the vertical
deflection of a beam as it passes through all the windows of a cryostat, however, taking measurements
at different distances downstream of the cryostat collapses the relationship to a much simpler form

152



that is dependent on only a few variables. The equation,

D = A · tan
{

arcsin
(

nv

na
sin

(
arcsin

(nu

nv
sin

(
θu

)− θu

))}
, (E.1)

describes the vertical deflection of the beam (D) in terms of the horizontal distance between mea-
surement locations (A), the index of refraction of air, vacuum, and the unknown sample (na, nv, nu),
and the vertical angle between the incident beam and the intentionally tilted window (θu). This
equation is first solved for θu using a substance of known index (e.g. liquid H2). Once the angle
is known, the equation can be solved for nu using data taken with an unknown sample. It is im-
portant that neither the path of the beam nor the position of the cryostat change between these
measurements.

Due to the nature of equation (E.1) it is necessary to solve for θu and nu numerically. A program
was written in Fortran 95 that allows the operator to input the measured D and A, along with
various environmental conditions used for the precise calculation of na. The code is shown below so
that it can be used for future experiments, or the pertinent constants can be picked out if designing
new programs for analysing the data.

−−−−−−−−−−−−−−−−−−−
MODULE constants2

IMPLICIT NONE

INTEGER, PARAMETER : : dp = SELECTED REAL KIND(13)

REAL(dp ) , PARAMETER : : p i = 3.141592653589793238462643383279502884197 dp

LOGICAL : : a i rB i t =. Fa l se .

END MODULE constants2

−−−−−−−−−−−−−−−−−−−
MODULE solidhydrogenmod

USE constants2 , ONLY: pi , dp , a i r b i t

IMPLICIT NONE

CONTAINS

SUBROUTINE ang l e f i n d e r ( j , z , a , nv , knownindex , to l e rance , thetaUnknown )

! Purpose : This subrout ine w i l l c a l c u l a t e the ang le o f the c e l l window

! us ing e i t h e r a measured change in he ight with vacuum in the c e l l , or

! a sample o f known index .

USE constants2 , ONLY: pi , dp

IMPLICIT NONE

! Dec lare i n t e n t s

INTEGER(dp ) , INTENT(IN ) : : j

REAL(dp ) , INTENT(IN ) : : z

REAL(dp ) , INTENT(IN ) : : a

REAL(dp ) , INTENT(IN ) : : knownindex

REAL(dp ) , INTENT(IN ) : : t o l e r an c e
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REAL(dp ) , INTENT(IN ) : : nv

REAL(dp ) , INTENT(OUT) : : thetaUnknown

! Dec lare l o c a l v a r i a b l e s

REAL(dp ) : : s =.125 dp ! sapph i re window th i ckne s s

REAL(dp ) : : sapphIndex =1.75755 dp ! index o f sapph i re windows at 640 nm

REAL(dp ) : : zTemp=0. dp ! the c a l c u l a t ed v e r t i c a l d i s t ance

REAL(dp ) : : d e l t a =10. dp ! the d i f f e r e n c e between zTemp and z

REAL(dp ) : : thetaTemp=0. dp ! the dummy value o f theta used ana l y s i s

REAL(dp ) : : s t ep =.000001 dp ! va lue o f theta s tep

REAL(dp ) : : na ! the index o f r e f r a c t i o n o f a i r

IF ( j==2 .AND. a i r b i t == . Fa l se . ) THEN

CALL ai r IndexFinder ( na )

END IF

! Reset v a r i a b l e s

thetaTemp=0. dp

de l t a =10. dp

! Ca l cu la te thetaUnknown

DO WHILE ( de l t a > t o l e r an c e .AND. thetaTemp <=pi /2 . dp )

SELECT CASE ( j )

CASE(1) ! when z i s known and vacuum i s used

! Ca l cu la te zTemp

zTemp=(s )∗ Sin ( thetaTemp−ASin ( ( knownindex/ sapphIndex )∗ Sin ( thetaTemp)))&

&/Cos (ASin ( ( knownindex/ sapphIndex )∗ Sin ( thetaTemp ) ) )

CASE(2)

! Ca l cu la te zTemp

zTemp=a∗Tan(ASin ( ( nv/na )∗ Sin (ASin ( ( knownindex/nv )∗ Sin ( thetaTemp))−thetaTemp ) ) )

END SELECT

! Write (∗ ,∗ ) ztemp , thetaTemp ∗180 . dp/pi , d e l t a ! f o r d i a gno s i s

! Test f o r convergence

de l t a=Abs(zTemp−z )

! Increment thetaTemp

thetaTemp=thetaTemp+step

END DO

thetaUnknown=thetaTemp ∗180 . dp/ p i ! convert from rad ians to degree s

END SUBROUTINE

−−−−−−−−−−−−−−−−−−−
SUBROUTINE index f i nd e r ( thetaUnknown , a , z , nv , to l e rance , unknownIndex )

! Purpose : This subrout ine w i l l c a l c u l a t e the unknown index o f the media
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USE constants2 , ONLY: pi , dp

IMPLICIT NONE

! Dec lare i n t e n t s

REAL(dp ) , INTENT(IN ) : : thetaUnknown

REAL(dp ) , INTENT(IN ) : : a

REAL(dp ) , INTENT(IN ) : : z

REAL(dp ) , INTENT(IN ) : : nv

REAL(dp ) , INTENT(IN ) : : t o l e r an c e

REAL(dp ) , INTENT(OUT) : : unknownIndex

! Dec lare l o c a l v a r i a b l e s

REAL(dp ) : : zTemp=0. dp ! the c a l c u l a t ed v e r t i c a l d i s t ance

REAL(dp ) : : d e l t a =10. dp ! the d i f f e r e n c e between zTemp and z

REAL(dp ) : : tempIndex=0. dp ! the dummy value o f index used f o r a n a l y s i s

REAL(dp ) : : s t ep =.000001 dp ! va lue o f index step

REAL(dp ) : : na ! the index o f r e f r a c t i o n o f a i r

REAL(dp ) : : tempTheta ! working value o f window angle ( in rad ians )

INTEGER : : l ! index

! Ca l cu la te index o f lab a i r

Ca l l a i r IndexFinder ( na )

! Reset v a r i a b l e s

unknownIndex=0. dp

Delta =10. dp

tempTheta=thetaUnknown∗ pi /180 . dp

! Ca l cu la te the index o f the media ( s o l i d hydrogen )

l=1

DO WHILE ( de l t a > t o l e r an c e .AND. unknownIndex <= 2 . dp )

zTemp=a∗Tan(ASin ( ( nv/na )∗ Sin (ASin ( ( tempindex/nv )∗ Sin ( tempTheta))−tempTheta ) ) )

! Test f o r convergence

de l t a=Abs(zTemp−z )

! Increment thetaTemp

tempIndex=tempIndex+step

! wr i t e (∗ ,∗ ) de l ta , ztemp , tempindex

l=l+1

END DO

! Set index value

unknownIndex=tempIndex

END SUBROUTINE

−−−−−−−−−−−−−−−−−−−
SUBROUTINE ai r IndexFinder ( na )

! Purpose : This subrout ine c a l c u l a t e s the index o f r e f r a c t i o n o f lab a i r
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USE constants2 , ONLY: pi , dp

IMPLICIT NONE

! Dec lare i n t e n t s

REAL(dp ) , INTENT(OUT) : : na

! Dec lare l o c a l v a r i a b l e s

REAL(dp ) : : a i r Index =.00027656 ! the index o f r e f r a c t i o n at 630 nm (n−1)

REAL(dp ) : : c o r r e c t i o n ! the value by which to mult ip ly n−1 to c o r r e c t

REAL(dp ) : : t ! temperature

REAL(dp ) : : p ! p r e s su r e

REAL(dp ) : : p r e s su r e =101325. dp ! the ambient p r e s su r e

REAL(dp ) : : temperature =15. dp ! the ambient temperature

CHARACTER( l en =5) : : defaultAnswer ! the answer y or n

! Prepatory work : c a l c u l a t e the index o f r e f r a c t i o n o f a i r at 630 nm

WRITE(∗ ,∗ ) ’ ’

WRITE(∗ ,∗ ) ’ P lease g ive me some in fo rmat ion with which to ca l cu l a t e ’

WRITE(∗ ,∗ ) ’ the index o f r e f r a c t i o n o f a i r in the lab . ’

WRITE(∗ ,∗ ) ’ ’

WRITE(∗ ,∗ ) ’Do you want to use d e f au l t va lue s o f 15 deg C and 101325 Pasca l s ? ( y/n ) ’

READ(∗ ,∗ ) defaultAnswer

IF ( defaultAnswer==’n ’ ) THEN

WRITE(∗ ,∗ ) ’What was the temperature in the lab ( in degree s C)? ’

READ(∗ ,∗ ) t

WRITE(∗ ,∗ ) ’What was the p r e s su r e in the lab ( in Pasca l s ) ? ’

READ(∗ ,∗ ) p

ELSE

t=temperature

p=pre s su r e

END IF

! Ca l cu la te c o r r e c t i o n f a c t o r

c o r r e c t i o n=p ∗ ( 1 . dp + p ∗ (61 . 3 dp − t )∗ .0000000001)&

&/(96095.4 dp ∗ ( 1 . dp + 0.003661 dp∗ t ) )

! Apply c o r r e c t i o n f a c t o r

na=1. dp + co r r e c t i o n ∗ a i r Index

! Write r e s u l t s

WRITE(∗ ,∗ ) ’ ’

WRITE(∗ ,∗ ) ’The index o f r e f r a c t i o n o f the lab a i r was : ’ , na

! Set a i r b i t

! a i r b i t =.True .

END SUBROUTINE

END MODULE

−−−−−−−−−−−−−−−−−−
PROGRAM sol idhydrogenprog

!

! Purpose :
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! To f i nd the ang le o f i n t e r e s t in the i n f r a r e d l a b o r a t o r i e s c r yo s t a t or to f i nd

! the index o f r e f r a c t i o n o f an unknown .

!

USE constants2 , ONLY: dp

USE solidhydrogenmod

IMPLICIT NONE

! Parameter d e c l a r a t i o n

REAL(dp ) : : d ! the value o f o f f s e t in the z ax i s

REAL(dp ) : : thetaUnknown ! the value o f the unknown ang le

REAL(dp ) : : knownIndex ! the index o f r e f r a c t i o n o f the known media

REAL(dp ) : : unknownIndex ! the index o f r e f r a c t i o n that i s unknown

REAL(dp ) : : a ! the d i s t ance o f y−ax i s t r a n s l a t i o n f o r the de t e c t o r

REAL(dp ) : : nv=1.0 dp ! the index o f r e f r a c t i o n o f vacuum

REAL(dp ) : : nu ! the unknown index o f r e f r a c t i o n

REAL(dp ) : : z ! the v e r t i c a l d i sp lacement o f the beam

REAL(dp ) : : t o l e r an c e =.00001 ! the t o l e r an c e value to be used in convergence

INTEGER : : i , j ! the answers to i n i t i a l operator que s t i on s

CHARACTER( l en =5) : : answer=’y ’ ! the answer to cont inue or not to cont inue

! Ask the operator what he or she wants to do

DO WHILE ( answer==’y ’ .AND. i /=3)

WRITE(∗ ,∗ ) ’Do you want to c a l c u l a t e an unknown angle ( 1 ) , an index (2 ) , or Exit ( 3 ) ? ’

READ(∗ ,∗ ) i

SELECT CASE ( i )

CASE (1)

WRITE(∗ ,∗ ) ’Are you c a l c u l a t i n g us ing a de l t a z and vacuum in the c e l l ( 1 ) , ’

WRITE(∗ ,∗ ) ’ or us ing a known standard (2 ) ? ’

READ(∗ ,∗ ) j

SELECT CASE ( j )

CASE (1)

WRITE(∗ ,∗ ) ’What i s the observed change in beamheight ( z , in inche s ) ? ’

! the above value i s abso lu t e inches , the ‘− ’ s i gn i s inco rpora ted

! in the c a l c .

READ(∗ ,∗ ) z

knownIndex=nv

CASE (2)

WRITE(∗ ,∗ ) ’What i s the index o f r e f r a c t i o n o f the known sample (n )? ’

READ(∗ ,∗ ) knownIndex

WRITE(∗ ,∗ ) ’What ho r i z on t a l d i s t anc e did you move the de t e c t o r ( inche s ) ? ’

READ(∗ ,∗ ) a

WRITE(∗ ,∗ ) ’What was the observed change in beamheight ( z , in inche s ) ? ’

READ(∗ ,∗ ) z

END SELECT

CALL ang l e f i n d e r ( j , z , a , nv , knownindex , to l e rance , thetaUnknown )

! Write r e s u l t s

WRITE(∗ ,∗ ) ’ ’

WRITE(∗ ,∗ ) ’The ang le o f the window on the c e l l i s : ’ , thetaUnknown
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CASE (2)

WRITE(∗ ,∗ ) ’What ho r i z on t a l d i s t ance did you move the de t e c t o r ( in inche s )? ’

READ(∗ ,∗ ) a

WRITE(∗ ,∗ ) ’What was the observed change in beamheight ( z , in inche s )? ’

READ(∗ ,∗ ) z

WRITE(∗ ,∗ ) ’What i s the value o f the window angle ( in degree s ) ? ’

READ(∗ ,∗ ) thetaUnknown

CALL index f i nd e r ( thetaUnknown , a , z , nv , to l e rance , unknownIndex )

! Write r e s u l t s

WRITE(∗ ,∗ ) ’The c a l c u l a t ed index o f r e f r a c t i o n i s : ’ , unknownIndex

END SELECT

IF ( i /=3) THEN

WRITE(∗ ,∗ ) ’ ’

WRITE(∗ ,∗ ) ’Would you l i k e to perform another opera t i on ? (y/n ) ’

READ(∗ ,∗ ) answer

END IF

END DO

WRITE(∗ ,∗ ) ’ ’

WRITE(∗ ,∗ ) ’Goodbye va l i an t r e f r a c t i o n exp l o r e r ! ’

END PROGRAM
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